OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 228–237

Light propagation in finite-sized photonic crystals: multiple scattering using an electric field integral equation

Philip Trøst Kristensen, Peter Lodahl, and Jesper Mørk  »View Author Affiliations


JOSA B, Vol. 27, Issue 2, pp. 228-237 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000228


View Full Text Article

Enhanced HTML    Acrobat PDF (389 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an accurate, stable, and efficient solution to the Lippmann–Schwinger equation for electromagnetic scattering in two dimensions. The method is well suited for multiple scattering problems and may be applied to problems with scatterers of arbitrary shape or non-homogenous background materials. We illustrate the method by calculating light emission from a line source in a finite-sized photonic crystal waveguide.

© 2010 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(290.4210) Scattering : Multiple scattering
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(160.5298) Materials : Photonic crystals

ToC Category:
Scattering

History
Original Manuscript: September 24, 2009
Manuscript Accepted: November 16, 2009
Published: January 12, 2010

Citation
Philip Trøst Kristensen, Peter Lodahl, and Jesper Mørk, "Light propagation in finite-sized photonic crystals: multiple scattering using an electric field integral equation," J. Opt. Soc. Am. B 27, 228-237 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-2-228


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. P. Bykov, “Spontaneous emission from a medium with a band spectrum,” Sov. J. Quantum Electron. 4, 861-871 (1975). [CrossRef]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  4. K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65, 2646-2649 (1990). [CrossRef] [PubMed]
  5. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, 1990).
  6. A. Tavlove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  7. P. Šolín, Partial Differential Equations and the Finite Element Method (Wiley Interscience, 2006).
  8. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  9. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation: errata,” J. Opt. Soc. Am. B 20, 1581-1581 (2003). [CrossRef]
  10. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]
  11. S. Campbell, R. C. McPhedran, C. M. de Sterke, and L. C. Botten, “Differential multipole method for microstructured optical fibers,” J. Opt. Soc. Am. B 21, 1919-1928 (2004). [CrossRef]
  12. A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. M. de Sterke, and N. A. Nicorovici, “Two-dimensional Green tensor and local density of states in finite-sized two-dimensional photonic crystals,” Waves Random Media 13, 9-25 (2003). [CrossRef]
  13. D. P. Fussell, R. C. McPhedran, and C. M. de Sterke, “Three-dimensional Green's tensor, local density of states, and spontaneous emission in finite two-dimensional photonic crystals composed of cylinders,” Phys. Rev. E 70, 066608 (2004). [CrossRef]
  14. X. Wang, X.-G. Zhang, Q. Yu, and B. N. Harmon, “Multiple-scattering theory for electromagnetic waves,” Phys. Rev. B 47, 4161-4167 (1993). [CrossRef]
  15. V. Yannopapas and N. V. Vitanov, “Electromagnetic Green's tensor and local density of states calculations for collections of spherical scatterers,” Phys. Rev. B 75, 115124 (2007). [CrossRef]
  16. A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics (IEEE, 1998).
  17. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973). [CrossRef]
  18. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491-1499 (1994). [CrossRef]
  19. R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” EPL 35, 265-270 (1996). [CrossRef]
  20. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896-3908 (1998). [CrossRef]
  21. R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Local density of states in three-dimensional photonic crystals: calculation and enhancement effects,” Phys. Rev. B 67, 155114 (2003). [CrossRef]
  22. I. S. Nikolaev, W. L. Vos, and A. F. Koenderink, “Accurate calculation of the local density of optical states in inverse-opal photonic crystals,” J. Opt. Soc. Am. B 26, 987-997 (2009). [CrossRef]
  23. A. F. Koenderink, M. Kafesaki, C. M. Soukoulis, and V. Sandoghdar, “Spontaneous emission rates of dipoles in photonic crystal membranes,” J. Opt. Soc. Am. B 23, 1196-1206 (2006). [CrossRef]
  24. V. S. C. Manga Rao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007). [CrossRef]
  25. A. R. Cowan and J. F. Young, “Optical bistability involving photonic crystal microcavities and Fano line shapes,” Phys. Rev. E 68, 046606 (2003). [CrossRef]
  26. S. Hughes, “Quantum emission dynamics from a single quantum dot in a planar photonic crystal nanocavity,” Opt. Lett. 30, 1393-1395 (2005). [CrossRef] [PubMed]
  27. L.-M. Zhao, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Green's function for photonic crystal slabs,” Phys. Rev. E 72, 026614 (2005). [CrossRef]
  28. H. Levine and J. Schwinger, “On the theory of diffraction by an aperture in an infinite plane screen. I,” Phys. Rev. 74, 958-974 (1948). [CrossRef]
  29. M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the Green's tensor for stratified media,” Phys. Rev. E 62, 5797-5807 (2000). [CrossRef]
  30. M. Paulus and O. J. F. Martin, “Green's tensor technique for scattering in two-dimensional stratified media,” Phys. Rev. E 63, 066615 (2001). [CrossRef]
  31. O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909-3915 (1998). [CrossRef]
  32. A. D. Yaghjian, “Electric dyadic Green's functions in the source region,” Proc. IEEE 68, 248-263 (1980). [CrossRef]
  33. P. Martin, Multiple Scattering: Interaction of Time-Harmonic Waves withNObstacles (Cambridge U. Press, 2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited