OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 259–265

Quantum detection of wavelength-division-multiplexing optical coherent signals

Atsushi Waseda, Masahiro Takeoka, Masahide Sasaki, Mikio Fujiwara, and Hidema Tanaka  »View Author Affiliations


JOSA B, Vol. 27, Issue 2, pp. 259-265 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000259


View Full Text Article

Enhanced HTML    Acrobat PDF (656 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically evaluate the transmission rates of a single fiber with the wavelength-division-multiplexing (WDM) transmission of coherent signals with conventional homodyne-based (dyne-type) detections and various quantum detection strategies. We reveal the quantitative gap between these detection strategies especially in the quantum-limited region where the quantum noise seriously limits the transmission rate. For an extremely weak signal input power, there is a crucial gap between the capacity limit and the transmission rates of the WDM system with dyne-type detections. We show that this gap is filled by applying a collective square root detection (SRD) only for each channel, not necessary for quantum collective decoding among WDM channels.

© 2010 Optical Society of America

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5565) Quantum optics : Quantum communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 8, 2009
Revised Manuscript: November 7, 2009
Manuscript Accepted: November 7, 2009
Published: January 19, 2010

Citation
Atsushi Waseda, Masahiro Takeoka, Masahide Sasaki, Mikio Fujiwara, and Hidema Tanaka, "Quantum detection of wavelength-division-multiplexing optical coherent signals," J. Opt. Soc. Am. B 27, 259-265 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-2-259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Gordon, “Quantum effects in communication systems,” Proc. IRE 50, 1808-1908 (1962). [CrossRef]
  2. H. Takahashi, “Information theory of quantum mechanical channels,” in “Advances in Communication Systems, A.Balahrishnan, ed. (1965),Vol. 1, pp. 227-3100 .
  3. P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, and W. K. Wootters, “Classical information capacity of a quantum channel,” Phys. Rev. A 54, 1869-1876 (1996). [CrossRef] [PubMed]
  4. B. Schumacher and M. D. Westmoreland, “Sending classical information via noisy quantum channels,” Phys. Rev. A 56, 131-138 (1997). [CrossRef]
  5. A. S. Holevo, “The capacity of the quantum channel with general signal states,” IEEE Trans. Inf. Theory 44, 269-273 (1998). [CrossRef]
  6. A. S. Holevo, M. Sohma, and O. Hirota, “Capacity of quantum gaussian channels,” Phys. Rev. A 59, 1820-1828 (1999). [CrossRef]
  7. A. S. Holevo and R. F. Werner, “Evaluating capacities of bosonic gaussian channels,” Phys. Rev. A 63, 032312 (2001). [CrossRef]
  8. V. Giovannetti, S. Lloyd, L. Maccone, and P. W. Shor, “Broadband channel capacities,” Phys. Rev. A 68, 062323 (2003). [CrossRef]
  9. V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, J. H. Shapiro, and H. P. Yuen, “Classical capacity of the lossy bosonic channel: The exact solution,” Phys. Rev. Lett. 92, 027902 (2004). [CrossRef] [PubMed]
  10. K. Kato, M. Osaki, M. Sasaki, and O. Hirota, “Quantum detection and mutual information for QAM and PSK signals,” IEEE Trans. Commun. 47, 248-254 (1999). [CrossRef]
  11. R. S. Kennedy, “A near-optimum receiver for the binary coherent state quantum channel,” Res. Lab Electron., MIT, Quarterly Progress Rep. (1973), p. 219.
  12. S. Dolinar, “An optimum receiver for the binary coherent state quantum channel,” Res. Lab Electron., MIT, Quarterly Progress Rep. (1973), p. 115.
  13. M. Takeoka and M. Sasaki, “Discrimination of the binary coherent signal: Gaussian-operation limit and simple non-gaussian near-optimal receivers,” Phys. Rev. A 78, 022320 (2008). [CrossRef]
  14. C. W. Helstrom, Quantum Detection and Estimation Theory (Academic, 1976).
  15. R. L. Cook, P. J. Martin, and J. M. Geremia, “Optical coherent state discrimination using a closed-loop quantum measurement,” Nature 446, 774-777 (2007). [CrossRef] [PubMed]
  16. C. Wittmann, M. Takeoka, K. N. Cassemiro, M. Sasaki, G. Leuchs, and U. L. Andersen, “Demonstration of near-optimal discrimination of optical coherent states,” Phys. Rev. Lett. 101, 210501 (2008). [CrossRef] [PubMed]
  17. M. Sasaki, R. Momose, and O. Hirota, “Quantum detection for on-off keyed mixed-state signals with a small amount of thermal noise,” Phys. Rev. A 55, 3222-3225 (1997). [CrossRef]
  18. V. A. Vilnrotter and C.-W. Lau, “Quantum detection of binary and ternary signals in the presence of thermal noise fields,” The InterPlanetary Network Progress Report, Vol. 42(2002).
  19. G. Cariolaro and G. Pierobon, “Performance of quantum data transmission systems in the presence of thermal noise,” eprint arXiv:0904.1073 (2009). Accepted for publication in IEEE Trans. Commun..
  20. H. Kogelnik, “High capacity optical communications: Personal recollections,” IEEE J. Sel. Top. Quantum Electron. 6, 1279-1286 (2000). [CrossRef]
  21. P. Mitra and J. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411, 1027-1030 (2001). [CrossRef] [PubMed]
  22. H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177-179 (1983). [CrossRef] [PubMed]
  23. V. P. Belavkin, “Optimum distinction of nonorthogonal quantum signals,” Radio Eng. Electron. Phys. 20, 39-47 (1975).
  24. A. S. Holevo, “On capacity of a quantum communication channel,” Probl. Peredachi Inf. 15, 3-11 (1979). Translation in Probl. Inf. Transm. 15, 247-253 (1979).
  25. M. Ban, K. Kurokawa, R. Momose, and O. Hirota, “Optimum measurements for discrimination among symmetric quantum states and parameter estimation,” Int. J. Theor. Phys. 36, 1269-1288 (1997). [CrossRef]
  26. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
  27. J. R. Buck, S. J. van Enk, and C. A. Fuchs, “Experimental proposal for achieving superadditive communication capacities with a binary quantum alphabet,” Phys. Rev. A 61, 032309 (2000). [CrossRef]
  28. M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90, 167906 (2003). [CrossRef] [PubMed]
  29. M. Takeoka, M. Fujiwara, J. Mizuno, and M. Sasaki, “Implementation of generalized quantum measurements: Superadditive quantum coding, accessible information extraction, and classical capacity limit,” Phys. Rev. A 69, 052329 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited