OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 266–276

Entropic uncertainty in two two-level atoms interacting with a cavity field in presence of degenerate parametric amplifier

E. M. Khalil, M. Sebawe Abdalla, A. S.-F. Obada, and Jan. Peřina  »View Author Affiliations


JOSA B, Vol. 27, Issue 2, pp. 266-276 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000266


View Full Text Article

Enhanced HTML    Acrobat PDF (701 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The analytical solution of the problem of two two-level atoms with degenerate two-photon transitions interacting with a single-mode radiation field in the presence of a parametric amplifier term is presented. The purity of the atomic state has been used to measure the degree of entanglement between the atom and the field. The temporal evolution of variance and entropy squeezing as well as atomic inversion for the single-atom case are studied. It has been shown that maximum squeezing for the variance and entropy squeezing occurs when the ratio between the amplifier coupling λ 3 and the field frequency ω equals 0.26. Increasing the value of the ratio λ 3 ω further leads to the vanishing of squeezing from the system. It is also noted that the existence of the coupling parameter results in the system never reaching the pure state except at the points of revival times. The Q function has been also considered to give more information in the phase space about the system. These aspects are sensitive to changes in the amplifier parameter.

© 2010 Optical Society of America

OCIS Codes
(270.5290) Quantum optics : Photon statistics
(270.6570) Quantum optics : Squeezed states
(270.6630) Quantum optics : Superradiance, superfluorescence

ToC Category:
Quantum Optics

History
Original Manuscript: July 2, 2009
Revised Manuscript: November 7, 2009
Manuscript Accepted: November 14, 2009
Published: January 19, 2010

Citation
E. M. Khalil, M. Sebawe Abdalla, A. S.-F. Obada, and Jan. Peřina, "Entropic uncertainty in two two-level atoms interacting with a cavity field in presence of degenerate parametric amplifier," J. Opt. Soc. Am. B 27, 266-276 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-2-266


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89-109 (1963). [CrossRef]
  2. H. I. Yoo and J. H. Eberly, “Dynamical theory of an atom with two or three levels interacting with quantized cavity fields,” Phys. Rep. 118, 239-337 (1985). [CrossRef]
  3. B. W. Shore and P. L. Knight, “The Jaynes-Cummings model,” J. Mod. Opt. 40, 1195-1238 (1993). [CrossRef]
  4. H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325-1382 (2006). [CrossRef]
  5. M. S. Abdalla, M. M. A. Ahmed, and A.-S. F. Obada, “Dynamics of a nonlinear Jaynes-Cummings model,” Physica A 162, 215-240 (1990). [CrossRef]
  6. M. S. Abdalla, M. M. A. Ahmed, and A.-S. F. Obada, “Multimode and multiphoton processes in a nonlinear Jaynes-Cummings model,” Physica A 170, 393-414 (1991). [CrossRef]
  7. M. Abdel-Aty, M. S. Abdalla, and A.-S. F. Obada, “Entropy squeezing of a two-mode multiphoton Jaynes-Cummings model in the presence of in a nonlinear medium,” J. Opt. B: Quantum Semiclassical Opt. 4, 134-142 (2002). [CrossRef]
  8. M. Abdel-Aty, M. S. Abdalla, and A. S.-F. Obada, “Uncertainty relation and information entropy of a time-dependent bimodel two-level system,” J. Phys. B 35, 4773-4786 (2002). [CrossRef]
  9. M. S. Abdalla, M. Abdel-Aty, and A. S.-F. Obada, “Entropy and entanglement of time-dependent Jaynes-Cummings model,” Physica A 326, 203-219 (2003). [CrossRef]
  10. A. S.-F. Obada, M. Abdel-Aty, and M. S. Abdalla, “Quantum treatment of a time-dependent single trapped ion interacting with a bimodal cavity field,” Int. J. Mod. Phys. B 17, 5925-5941 (2003). [CrossRef]
  11. M. S. Abdalla, J. Křepelka, and J. Peřina, “Effect of Kerr-like medium on a two-level atom in interaction with bimodal oscillators,” J. Phys. B 39, 1563-1577 (2006). [CrossRef]
  12. M. Abdel-Aty, M. S. Abdalla, and A.-S. F. Obada, “Quantum information and entropy squeezing of a two-level atom with a nonlinear medium,” J. Phys. A. 34, 9129-9141 (2001). [CrossRef]
  13. J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature 404, 579-581 (2000). [CrossRef] [PubMed]
  14. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
  15. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993). [CrossRef] [PubMed]
  16. V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,” Phys. Rev. A 57, 1619-1622 (2000). [CrossRef]
  17. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565-582 (2001). [CrossRef]
  18. S. Bose, I. Fuentes-Guridi, P. L. Knight, and V. Vedral, “Subsystem purity as an enforcer of entanglement,” Phys. Rev. Lett. 87, 050401 (2001). [CrossRef] [PubMed]
  19. M. S. Kim, J. Y. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101 (2002). [CrossRef]
  20. J. S. Zhang, J. B. Xu, and Q. Lin, “Controlling entanglement sudden death in cavity QED by classical driving fields,” Eur. Phys. J. D 51, 283-288 (2009). [CrossRef]
  21. Y. Yamamoto and R. E. Slusher, “Optical processes in Microcavities,” Phys. Today 46, 66-73 (1993). [CrossRef]
  22. D. P. Di Vincenzo, “Quantum computation,” Science 270, 255-261 (1995). [CrossRef]
  23. D.Bouwmeester, A.Ekert, and A.Zeilinger eds., The Physics of Quantum Information, Springer, 2000.
  24. R. R. Puri and G. S. Agarwal, “Coherent two-photon transitions in Rydberg atoms in a cavity with finite Q,” Phys. Rev. A 37, 3879-3883 (1988). [CrossRef] [PubMed]
  25. P. A. M. Netto, L. Davidovich, and J. M. Raimond, “Theory of the nondegenerate two-photon micromaser,” Phys. Rev. A 43, 5073-5089 (1991). [CrossRef]
  26. D. J. Gauthier, L. Q. Wu, S. E. Morrin, and T. W. Mossberg, “Realization of a continuous-wave, two-photon optical laser,” Phys. Rev. Lett. 68, 464-467 (1992). [CrossRef] [PubMed]
  27. S. C. Gau, “Time evolution of a two-mode Jaynes-Cummings model in the presence of pair-coherent states,” J. Mod. Opt. 37, 1469-1486 (1990). [CrossRef]
  28. T. Nasreen and M. S. K. Razmi, “Atomic emission and cavity field spectra for a two-photon Jaynes-Cummings model in the presence of Stark shift,” J. Opt. Soc. Am. 10, 1292-1300 (1993). [CrossRef]
  29. Y. F. Gao, J. Feng, and S. R. Shi, “Cavity field spectra of the intensity-dependent two-mode Jaynes-Cummings model,” Int. J. Theor. Phys. 41, 867-875 (2002). [CrossRef]
  30. M. S. Abdalla, S. S. Hassan, and M. Abdel-Aty, “Entropic uncertainty in the Jaynes-Cummings model in presence of a second-harmonic generation,” Opt. Commun. 244, 431-443 (2005). [CrossRef]
  31. M. S. Abdalla, M. Abdel-Aty, and A.-S. F. Obada, “Sensitive response of the quantum entropies to Jaynes-Cummings model in presence of a second-harmonic generation,” Int. J. Theor. Phys. 46, 637-651 (2007). [CrossRef]
  32. M. G. Benedict, Super-radiance (Taylor and Frances Group,1996).
  33. L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms (John Wiley, 1975).
  34. M. Sargent, M. O. Scully, and W. E. Lamb Jr., Laser Physics (Addison-Wesley, 1974).
  35. C. H. Bennet and S. J. Weisner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992). [CrossRef]
  36. S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, “Improvement of frequency standards with quantum entanglement,” Phys. Rev. Lett. 79, 3865-3868 (1997). [CrossRef]
  37. S. Bose, V. Vedral, and P. L. Knight, “Multiparticle generalization of entanglement swapping,” Phys. Rev. A 57, 822-829 (1998). [CrossRef]
  38. M. Murao, M. B. Plenio, S. Popescue, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A 57, R4075-R4078 (1998). [CrossRef]
  39. A. Carlson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162-168 (1999). [CrossRef]
  40. P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493-R2496 (1995). [CrossRef] [PubMed]
  41. S. J. D. Phoenix and P. L. Knight, “Establishment of an entangled atom-field state in the Jaynes-Cummings model,” Phys. Rev. A 44, 6023-6029 (1991). [CrossRef] [PubMed]
  42. S. J. D. Phoenix and P. L. Knight, “An example of state preparation by a quantum apparatus,” Phys. Rev. Lett. 66, 2833-2833 (1991). [CrossRef] [PubMed]
  43. V. Buźek, H. Moya-Cessa, and P. L. Knight, “Schrödinger-cat states in the resonant Jaynes-Cummings model: collapse and revival of oscillations of the photon-number distribution,” Phys. Rev. A 45, 8190-8203 (1992). [CrossRef] [PubMed]
  44. P. L. Knight and P. M. Radamore, “Quantum origin of dephasing and revivals in the coherent-state Jaynes-Cummings model,” Phys. Rev. A 26, 676-679 (1982). [CrossRef]
  45. E. M. Khalil, “Generation of a nonlinear two-mode stark shift via nondegenerate Raman transition,” Int. J. Mod. Phys. B 30, 5143-5158 (2007). [CrossRef]
  46. M. S. Abdalla, E. M. Khalil, and A. S.-F. Obada, “Statistical properties of a two-photon cavity mode in the presence of degenerate parametric amplifier,” Ann. Phys. 11, 2554-2568 (2007). [CrossRef]
  47. E. M. Khalil, M. S. Abdalla, and A. S.-F. Obada, “Entropy and variance squeezing of two coupled modes interacting with a two-level atom: frequency converter type,” Ann. Physics 321, 421-434 (2006). [CrossRef]
  48. M. S. Abdalla, E. Lashin, and G. Sadiek, “Entropy and variance squeezing for time-dependent two-coupled atoms in an external magnetic field,” J. Phys. B 41, 015502 (2008). [CrossRef]
  49. M.-F. Fang, P. Zhou, and S. Swain, “Entropy squeezing for a two-level atom,” J. Mod. Opt. 47, 1043-1053 (2000). [CrossRef]
  50. E. Majernikova, V. Majernik, and S. Shpyrko, “Entropic uncertainty measure for fluctuations in two-level electron-phonon models,” Eur. Phys. J. B 38, 25-35 (2004). [CrossRef]
  51. J. Sanchez-Ruiz, “Improved bounds in the entropic uncertainty and certainty relations for complementary observables,” Phys. Lett. A 201, 125-131 (1995). [CrossRef]
  52. J. Sanchez-Ruiz, “Asymptotic formula for the quantum entropy of position in energy eigenstates,” Phys. Lett. A 226, 7-13 (1997). [CrossRef]
  53. Faisal A. A. El-Orany, M. R. B. Wahiddin, and A.-S. F. Obada, “Single-atom entropy squeezing for two two-level atoms interacting with a single-mode radiation field,” Opt. Commun. 281, 2854-2863 (2008). [CrossRef]
  54. S. J. D. Phoenix and P. L. Knight, “Periodicity, phase, and entropy in models of two photon resonance,” J. Opt. Soc. Am. B 7, 116-124 (1990). [CrossRef]
  55. M. M. A. Ahmed, E. M. Khalil, and A.-S. F. Obada, “Generation of a nonlinear stark shift through the adiabatic elimination method,” Opt. Commun. 254, 76-87 (2005). [CrossRef]
  56. A.-S. F. Obada, M. M. A. Ahmed, F. K. Faramawy, and E. M. Khalil, “Influence of Kerr-like medium on a nonlinear two-level atom,” Chaos, Solitons Fractals 28, 983-993 (2006). [CrossRef]
  57. P. Szlachetka, K. Grygiel, J. Bajer, and J. Peřina, “Chaos and order in second-harmonic generation: cumulant approach,” Phys. Rev. A 46, 7311-7314 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited