OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 277–285

Fractional frequency instability in the 10 14 range with a thermal beam optical frequency reference

John J. McFerran and Andre N. Luiten  »View Author Affiliations

JOSA B, Vol. 27, Issue 2, pp. 277-285 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a means of increasing the signal-to-noise ratio in a Ramsey–Bordé interferometer with spatially separated oscillatory fields on a thermal atomic beam. The S 0 1 P 1 3 intercombination line in neutral Ca 40 is used as a frequency discriminator, with an extended cavity diode laser at 423 nm probing the ground state population after a Ramsey–Bordé sequence of 657 nm light–field interactions with the atoms. Evaluation of the instability of the Ca frequency reference is carried out by comparison with (i) a hydrogen-maser and (ii) a cryogenic sapphire oscillator. In the latter case the Ca reference exhibits a square-root Λ variance of 9.2 × 10 14 at 1 s and 2.0 × 10 14 at 64 s . This is an order-of-magnitude improvement for optical beam frequency references, to our knowledge. The shot noise of the readout fluorescence produces a limiting square-root Λ variance of 7 × 10 14 τ , highlighting the potential for improvement. This work demonstrates the feasibility of a portable frequency reference in the optical domain with 10 14 range frequency instability.

© 2010 Optical Society of America

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(020.1335) Atomic and molecular physics : Atom optics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 4, 2009
Manuscript Accepted: November 29, 2009
Published: January 22, 2010

John J. McFerran and Andre N. Luiten, "Fractional frequency instability in the 10−14 range with a thermal beam optical frequency reference," J. Opt. Soc. Am. B 27, 277-285 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Rosenband, D. Hume, P. Schmidt, C. Chou, A. Brusch, L. Lorini, W. Oskay, R. Drullinger, T. Fortier, J. Stalnaker, S. Diddams, W. Swann, N. Newbury, W. Itano, D. Wineland, and J. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808-1812 (2008). [CrossRef] [PubMed]
  2. S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouche, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F. L. Hong, H. Katori, and V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using Sr87 optical lattice clocks,” Phys. Rev. Lett. 100, 140801 (2008). [CrossRef] [PubMed]
  3. T. Fortier, N. Ashby, J. Bergquist, M. Delaney, S. Diddams, T. Heavner, L. Hollberg, W. Itano, S. Jefferts, K. Kim, F. Levi, L. Lorini, W. Oskay, T. Parker, J. Shirley, and J. Stalnaker, “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance,” Phys. Rev. Lett. 98, 070801 (2007). [CrossRef] [PubMed]
  4. P. Antonini, M. Okhapkin, E. Goklu, and S. Schiller, “Test of constancy of speed of light with rotating cryogenic optical resonators,” Phys. Rev. A 71, 050101 (2005). [CrossRef]
  5. H. Müller, P. L. Stanwix, M. E. Tobar, E. Ivanov, P. Wolf, S. Herrmann, A. Senger, E. Kovalchuk, and A. Peters, “Tests of relativity by complementary rotating Michelson-Morley experiments,” Phys. Rev. Lett. 99, 050401 (2007). [CrossRef] [PubMed]
  6. H. Müller, S. Herrmann, A. Saenz, A. Peters, and C. Lammerzahl, “Optical cavity tests of Lorentz invariance for the electron,” Phys. Rev. D 68, 116006 (2003). [CrossRef]
  7. M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hansel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and P. Laurent, “Absolute frequency measurement of the Ca+404sS3/22-3dD5/22 clock transition,” Phys. Rev. Lett. 102, 023002 (2009). [CrossRef] [PubMed]
  8. N. Poli, Z. Barber, N. Lemke, C. Oates, L. Ma, J. Stalnaker, T. Fortier, S. Diddams, L. Hollberg, J. Bergquist, A. Brusch, S. Jefferts, T. Heavner, and T. Parker, “Frequency evaluation of the doubly forbidden S01-->P03 transition in bosonic Yb174,” Phys. Rev. A 77, 050501 (2008). [CrossRef]
  9. C. Tamm, B. Lipphardt, H. Schnatz, R. Wynands, S. Weyers, T. Schneider, and E. Peik, “Yb+171 single-ion optical frequency standard at 688 THz,” IEEE Trans. Instrum. Meas. 56, 601-604 (2007). [CrossRef]
  10. M. Takamoto, F. L. Hong, R. Higashi, Y. Fujii, M. Imae, and H. Katori, “Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic Sr-87 isotope,” J. Phys. Soc. Jpn. 75, 104302 (2006). [CrossRef]
  11. A. D. Ludlow, M. M. Boyd, T. Zelevinsky, S. M. Foreman, S. Blatt, M. Notcutt, T. Ido, and J. Ye, “Systematic study of the Sr87 clock transition in an optical lattice,” Phys. Rev. Lett. 96, 033003 (2006). [CrossRef] [PubMed]
  12. R. Le Targat, X. Baillard, M. Fouche, A. Brusch, O. Tcherbakoff, G. D. Rovera, and P. Lemonde, “Accurate optical lattice clock with Sr87 atoms,” Phys. Rev. Lett. 97, 130801 (2006). [CrossRef] [PubMed]
  13. G. Wilpers, C. Oates, and L. Hollberg, “Improved uncertainty budget for optical frequency measurements with microkelvin neutral atoms: results for a high-stability Ca40 optical frequency standard,” Appl. Phys. B Lasers Opt. 85, 31-44 (2006). [CrossRef]
  14. J. Friebe, A. Pape, M. Riedmann, K. Moldenhauer, T. Mehlstaubler, N. Rehbein, C. Lisdat, E. Rasel, W. Ertmer, H. Schnatz, B. Lipphardt, and G. Grosche, “Absolute frequency measurement of the magnesium intercombination transition S01-->P13,” Phys. Rev. A 78, 033830 (2008). [CrossRef]
  15. F.-L. Hong, J. Ishikawa, K. Sugiyama, A. Onae, H. Matsumoto, J. Ye, and J. Hall, “Comparison of independent optical frequency measurements using a portable iodine-stabilized nd:yag laser,” IEEE Trans. Instrum. Meas. 52, 240-244 (2003). [CrossRef]
  16. K.-K. Huang, J.-W. Zhang, D.-S. Yu, Z.-H. Chen, W. Zhuan, and J.-B. Chen, “Application of electron-shelving detection via 423 nm transition in calcium-beam optical frequency standard,” Chin. Phys. Lett. 23, 3198-3201 (2006). [CrossRef]
  17. A. Makdissi and E. de Clercq, “Evaluation of the accuracy of the optically pumped caesium beam primary frequency standard of the BNM-LPTF,” Metrologia 38, 409-425 (2001). [CrossRef]
  18. L. Chassagne, R. Hamouda, G. Theobald, and P. Crez, “Implementation of the beam reversal technique on compact cesium clocks: towards an improvement in accuracy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1513-1516 (2001). [CrossRef]
  19. P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B: Lasers Opt. 68, 27-38 (1999). [CrossRef]
  20. C. Degenhardt, H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz, B. Lipphardt, T. Nazarova, P.-E. Pottie, U. Sterr, J. Helmcke, and F. Riehle, “Calcium optical frequency standard with ultracold atoms: approaching 10−15 relative uncertainty,” Phys. Rev. A 72, 062111 (2005). [CrossRef]
  21. A. Morinaga, F. Riehle, J. Ishikawa, and J. Helmcke, “A ca optical frequency standard: Frequency stabilization by means of nonlinear ramsey resonances,” Appl. Phys. B: Lasers Opt. 48, 165-171 (1989). [CrossRef]
  22. F. Riehle, A. Witte, T. Kisters, and J. Helmcke, “Interferometry with Ca atoms,” Appl. Phys. B 54, 333-340 (1992). [CrossRef]
  23. A. Celikov, F. Riehle, V. Velichansky, and J. Helmcke, “Diode laser spectroscopy in a Ca atomic beam,” Opt. Commun. 107, 54-60 (1994). [CrossRef]
  24. W. Nagourney, J. Sandberg, and H. Dehmelt, “Shelved optical electron amplifier: Observation of quantum jumps,” Phys. Rev. Lett. 56, 2797-2799 (1986). [CrossRef] [PubMed]
  25. J. J. McFerran, J. G. Hartnett, and A. N. Luiten, “An optical beam frequency reference with 10−14 range frequency instability,” Appl. Phys. Lett. 95, 031103 (2009). [CrossRef]
  26. J. Bergquist, S. Lee, and J. Hall, “Saturated absorption with spatially separated laser fields: observation of optical 'Ramsey' fringes,” Phys. Rev. Lett. 38, 159-162 (1977). [CrossRef]
  27. C. J. Bordé, C. Salomon, S. Avrillier, A. van Lerberghe, C. Bréant, D. Bassi, and G. Scoles, “Optical Ramsey fringes with traveling waves,” Phys. Rev. A 30, 1836-1848 (1984). [CrossRef]
  28. C. J. Bordé, S. Avrillier, A. van Lerberghe, C. Salomon, C. Breant, D. Bassi, and G. Scoles, “Observation of optical Ramsey fringes in the 10 μm spectral region using a supersonic beam of SF6,” Appl. Phys. B: Lasers Opt. 28, 82-83 (1982).
  29. J. Helmcke, D. Zevgolis, and B. U. Yen, “Observation of high contrast, ultranarrow optical Ramsey fringes in saturated absorption utilizing 4 interaction zones of traveling waves,” Appl. Phys. B: Lasers Opt. 28, 83-84 (1982).
  30. S. T. Dawkins, “Sapphire room temperature optical frequency reference: design, construction and application,” Ph.D. thesis, University of Western Australia (2007).
  31. J. J. McFerran, S. T. Dawkins, P. L. Stanwix, M. E. Tobar, and A. N. Luiten, “Optical frequency synthesis from a cryogenic microwave sapphire oscillator,” Opt. Express 14, 4316-4327 (2006). [CrossRef] [PubMed]
  32. R. L. Barger, J. C. Bergquist, T. C. English, and D. J. Glaze, “Resolution of photon-recoil structure of the 657.3 nm calcium line in an atomic beam with optical Ramsey fringes,” Appl. Phys. Lett. 34, 850-852 (1979). [CrossRef]
  33. N. Ramsey, Molecular Beams (Clarendon Press, 1956).
  34. P. E. Douglas, “The vapor pressure of calcium: I,” Proc. Phys. Soc. London Sect. B 67, 783-786 (1954). [CrossRef]
  35. H. J. Metcalf and P. van der Straten, “Laser cooling and trapping of atoms,” J. Opt. Soc. Am. B 20, 887-908 (2003). [CrossRef]
  36. A. Wallard, “Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour,” J. Phys. E 5, 926-930 (1972). [CrossRef]
  37. S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 918-925 (2007). [CrossRef] [PubMed]
  38. C. R. Locke, E. N. Ivanov, J. G. Hartnett, P. L. Stanwix, and M. E. Tobar, “Invited article: Design techniques and noise properties of ultrastable cryogenically cooled sapphire-dielectric resonator oscillators,” Rev. Sci. Instrum. 79, 051301 (2008). [CrossRef] [PubMed]
  39. A. Joyet, G. Mileti, G. Dudle, and P. Thomann, “Theoretical study of the Dick effect in a continuously operated Ramsey resonator,” IEEE Trans. Instrum. Meas. 50, 150-156 (2001). [CrossRef]
  40. J. J. Snyder, J. Helmcke, and D. Zevgolis, “Longitudinal Ramsey-fringe spectroscopy in a calcium beam,” Appl. Phys. B: Lasers Opt. 32, 25-31 (1983). [CrossRef]
  41. D.-H. Yang, E.-X. Li, L.-M. Chen, B.-Y. Huang, and Y.-Q. Wang, “Experiment on optically pumped cesium beam frequency standard with sharp angle incidence probing laser beam,” Opt. Commun. 84, 275-278 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited