## Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment

JOSA B, Vol. 27, Issue 2, pp. 286-299 (2010)

http://dx.doi.org/10.1364/JOSAB.27.000286

Enhanced HTML Acrobat PDF (1374 KB)

### Abstract

We investigate the statistical properties of photon subtractions from a two-mode squeezed vacuum state and its decoherence in a thermal environment. It is found that the state can be considered as a squeezed two-variable Hermite polynomial excitation vacuum, and the normalization of this state is the Jacobi polynomial of the squeezing parameter. A compact expression for the Wigner function (WF) is also derived analytically by using the Weyl-ordered operator invariance under similar transformations. Especially, the nonclassicality is discussed in terms of the negativity of the WF. The decoherence effect on this state is then discussed by deriving the time evolution of the WF. It is shown that the WF is always positive for any squeezing parameter and any photon-subtraction number if the decay time exceeds an upper bound

© 2010 Optical Society of America

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.5290) Quantum optics : Photon statistics

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: September 28, 2009

Revised Manuscript: December 2, 2009

Manuscript Accepted: December 5, 2009

Published: January 22, 2010

**Citation**

Li-yun Hu, Xue-xiang Xu, and Hong-yi Fan, "Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment," J. Opt. Soc. Am. B **27**, 286-299 (2010)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-2-286

Sort: Year | Journal | Reset

### References

- D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, 2000).
- M. S. Kim, “Recent developments in photon-level operations on travelling light fields,” J. Phys. B 41, 133001-133018 (2008). [CrossRef]
- T. Opatrný, G. Kurizki, and D.-G. Welsch, “Improvement on teleportation of continuous variables by photon subtraction via conditional measurement,” Phys. Rev. A 61, 032302-1-7 (2000). [CrossRef]
- A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660-662 (2004). [CrossRef] [PubMed]
- A. Zavatta, S. Viciani, and M. Bellini, “Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission,” Phys. Rev. A 72, 023820-023828 (2005). [CrossRef]
- A. Biswas and G. S. Agarwal, “Nonclassicality and decoherence of photon-subtracted squeezed states,” Phys. Rev. A 75, 032104-032111 (2007). [CrossRef]
- P. Marek, H. Jeong, and M. S. Kim, “Generating 'squeezed' superposition of coherent states using photon addition and subtraction,” Phys. Rev. A 78, 063811-063818 (2008). [CrossRef]
- L. Y. Hu and H. Y. Fan, “Statistical properties of photon-subtracted squeezed vacuum in thermal environment,” J. Opt. Soc. Am. B 25, 1955-1964 (2008). [CrossRef]
- H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401-020404 (2004). [CrossRef] [PubMed]
- S. Y. Lee, J. Park, S. W. Ji, C. H. Raymond Ooi, and H. W. Lee, “Nonclassicality generated by photon annihilation-then-creation and creation-then-annihilation operators,” J. Opt. Soc. Am. B 26, 1532-1537 (2009). [CrossRef]
- J. Lee, J. Kim, and H. Nha, “Demonstrating higher-order nonclassical effects by photon-added classical states: realistic schemes,” J. Opt. Soc. Am. B 26, 1363-1369 (2009). [CrossRef]
- Y. Yang and F. L. Li, “Nonclassicality of photon-subtracted and photon-added-then-subtracted Gaussian states,” J. Opt. Soc. Am. B 26, 830-835 (2009). [CrossRef]
- A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum homodyne tomography of a two-photon Fock state,” Phys. Rev. Lett. 96, 213601-213604 (2006). [CrossRef] [PubMed]
- A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502-030505 (2007). [CrossRef] [PubMed]
- A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402-050405 (2001). [CrossRef] [PubMed]
- A. Zavatta, S. Viciani, and M. Bellini, “Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection,” Phys. Rev. A 70, 053821-053826 (2004). [CrossRef]
- M. D' Angelo, A. Zavatta, V. Parigi, and M. Bellini, “Tomographic test of Bell's inequality for a time-delocalized single photon,” Phys. Rev. A 74, 052114-052119 (2004). [CrossRef]
- S. A. Babichev, J. Appel, and A. I. Lvovsky, “Homodyne tomography characterization and nonlocality of a dual-mode optical qubit,” Phys. Rev. Lett. 92, 193601-193604 (2004). [CrossRef] [PubMed]
- J. S. Neergaard-Nielsen, B. Melholt Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604-083607 (2006). [CrossRef] [PubMed]
- A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and Ph. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83-86 (2006). [CrossRef] [PubMed]
- M. Dakna, T. Anhut, T. Opatrny, L. Knoll, and D.-G. Welsch, “Generating Schröinger-cat-like states by means of conditional measurements on a beam splitter,” Phys. Rev. A 55, 3184-3194 (1997). [CrossRef]
- S. Glancy and H. M. de Vasconcelos, “Methods for producing optical coherent state superpositions,” J. Opt. Soc. Am. B 25, 712-733 (2008). [CrossRef]
- S. Olivares and Matteo G. A. Paris, “Photon subtracted states and enhancement of nonlocality in the presence of noise,” J. Opt. B: Quantum Semiclassical Opt. 7, S392-S397 (2005). [CrossRef]
- S. Olivares and M. G. A. Paris, “Enhancement of nonlocality in phase space,” Phys. Rev. A 70, 032112-032117 (2004). [CrossRef]
- S. Olivares, M. G. A. Paris, and R. Bonifacio, “Teleportation improvement by inconclusive photon subtraction,”Phys. Rev. A 67, 032314-032318 (2003). [CrossRef]
- A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, “Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states,” Phys. Rev. A 73, 042310-042321 (2006). [CrossRef]
- P. T. Cochrane, T. C. Ralph, and G. J. Milburn, “Teleportation improvement by condition measurements on the two-mode squeezed vacuum,” Phys. Rev. A 65, 062306-062311 (2002). [CrossRef]
- S. D. Bartlett and B. C. Sanders, “Universal continuous-variable quantum computation: requirement of optical nonlinearity for photon counting,” Phys. Rev. A 65, 042304-042308 (2002). [CrossRef]
- M. Sasaki and S. Suzuki, “Multimode theory of measurement-induced non-Gaussian operation on wideband squeezed light: analytical formula,” Phys. Rev. A 73, 043807-043824 (2006). [CrossRef]
- M. S. Kim, E. Park, P. L. Knight, and H. Jeong, “Nonclassicality of a photon-substracted Gaussian field,” Phys. Rev. A 71, 043805-043809 (2005). [CrossRef]
- C. Invernizzi, S. Olivares, M. G. A. Paris, and K. Banaszek, “Effect of noise and enhancement of nonlocality in on/off photo detection,” Phys. Rev. A 72, 042105-042116 (2005). [CrossRef]
- V. Buzek, “SU(1,1) squeezing of SU(1,1) generalized coherent states,” J. Mod. Opt. 34, 303-316 (1990). [CrossRef]
- R. Loudon and P. L. Knight, “Squeezed light,” J. Mod. Opt. 34, 709-759 (1987). [CrossRef]
- P. Schleich Wolfgang, Quantum Optics in Phase Space (Wiley-VCH, 2001). [CrossRef]
- A. Wünsche, “Hermite and Laguerre 2D polynomials,” J. Comput. Appl. Math. 133, 665-678 (2001). [CrossRef]
- A. Wünsche, “General Hermite and Laguerre two-dimensional polynomials,” J. Phys. A 33, 1603-1629 (2000). [CrossRef]
- G. S. Agarwal, “Negative binomial states of the field-operator representation and production by state reduction in optical processes,” Phys. Rev. A 45, 1787-1792 (1992). [CrossRef] [PubMed]
- W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, 1996).
- R. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766-2788 (1963). [CrossRef]
- J. R. Klauder and B. S. Skargerstam, Coherent States (World Scientific, 1985).
- W. M. Zhang, D. F. Feng, and R. Gilmore, “Coherent state: theory and some applications,” Rev. Mod. Phys. 62, 867-927 (1990). [CrossRef]
- C. T. Lee, “Many-photon anti-bunching in generalized pair coherent states,” Phys. Rev. A 41, 1569-1575 (1990). [CrossRef] [PubMed]
- E. P. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749-759 (1932). [CrossRef]
- G. S. Agarwal and E. Wolf, “Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. I. Mapping theorems and ordering of functions of noncommuting operators,” Phys. Rev. D 2, 2161-2186 (1970). [CrossRef]
- M. S. Kim and V. Bužek, “Schrödinger-cat states at finit temperature: Influence of a finite-temperature heat bath on quantum interferences,” Phys. Rev. A 46, 4239-4251 (1992). [CrossRef] [PubMed]
- L. Y. Hu and H. Y. Fan, “Statistical properties of photon-added coherent state in a dissipative channel,” Phys. Scr. 79, 035004-035011 (2009). [CrossRef]
- H. Jeong, A. P. Lund, and T. C. Ralph, “Production of superpositions of coherent states in traveling optical fields with inefficient photon detection,” Phys. Rev. A 72, 013801-013812 (2005). [CrossRef]
- H. Jeong, J. Lee, and H. Nha, “Decoherence of highly mixed macroscopic quantum superpositions,” J. Opt. Soc. Am. B 25, 1025-1030 (2008). [CrossRef]
- H. Y. Fan, “Weyl ordering quantum mechanical operators by virtue of the IWWP technique,” J. Phys. A 25, 3443-3447 (1992). [CrossRef]
- H. Y. Fan, J. S. Wang, “On the Weyl ordering invariant under general n-mode similar transformations,” Mod. Phys. Lett. A 20, 1525-1532 (2005). [CrossRef]
- H. Y. Fan, “Newton-Leibniz integration for ket-bra operators in quantum mechanics (IV)--integrations within Weyl ordered product of operators and their applications,” Ann. Phys. (Paris) 323, 500-526 (2008). [CrossRef]
- H. Y. Fan and H. R. Zaidi, “Application of IWOP technique to the generalized Weyl correspondence,” Phys. Lett. A 124, 303-307 (1987). [CrossRef]
- C. Gardiner and P. Zoller, Quantum Noise (Springer, 2000).
- H. Jeong, J. Lee, and M. S. Kim, “Dynamics of nonlocality for a two-mode squeezed state in a thermal environment,” Phys. Rev. A 61, 052101-052105 (2000). [CrossRef]
- J. Lee, M. S. Kim, and H. Jeong, “Transfer of nonclassical features in quantum teleportation via a mixed quantum channel,” Phys. Rev. A 62, 032305 (2000). [CrossRef]
- Y. Takahashi and H. Umezawa, “Collective phenomena,” Int. J. Mod. Phys 2, 55-80 (1975).
- H. Umezawa, Advanced Field Theory--Micro, Macro, and Thermal Physics (AIP1993).
- H. Y. Fan and L. Y. Hu, “New approach for analyzing time evolution of density operator in a dissipative channel by the entangled state representation,” Opt. Commun. 281, 5571-5573 (2008). [CrossRef]
- H. Y. Fan, H. L. Lu, and Y. Fan, “Newton-Leibniz integration for ket-bra operators in quantum mechanics and derivation of entangled state representations,” Ann. Phys. (Paris) 321, 480-494 (2006) and references therein. [CrossRef]
- A. Wünsche, “About integration within ordered products in quantum optics,” J. Opt. Soc. Am. B 1, R11-R21 (1999).
- L. Y. Hu and H. Y. Fan, “Time evolution of Wigner function in laser process derived by entangled state representation,” Opt. Commun. 282, 4379-4383 (2009). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.