OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 305–310

Analysis of a photonic crystal cavity based on absorbent layer for sensing applications

Jean Dahdah, Nadège Courjal, and Fadi I. Baida  »View Author Affiliations


JOSA B, Vol. 27, Issue 2, pp. 305-310 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000305


View Full Text Article

Enhanced HTML    Acrobat PDF (560 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a photonic crystal (PhC) cavity based on a single hole defect filled with a sensitive absorbent layer for sensing applications. A preliminary study performed with the plane wave expansion method shows that the resonance peak of the cavity mode is 0.5 nm shifted for a 1 nm thickness variation of the sensitive layer. A Lorentz dispersion model implemented in a two-dimensional–finite difference time domain homemade code shows that the absorption of the layer can be exploited for enhancing the sensitivity of the sensor. With the proposed geometry, we find that a variation in the refractive index of 10 7 leads to a variation in the transmittivity of 23% at the resonance peak. This study is proposed for the development of a compact benzene sensor on a MgO doped lithium niobate PhC.

© 2010 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: September 28, 2009
Manuscript Accepted: December 2, 2009
Published: January 22, 2010

Citation
Jean Dahdah, Nadège Courjal, and Fadi I. Baida, "Analysis of a photonic crystal cavity based on absorbent layer for sensing applications," J. Opt. Soc. Am. B 27, 305-310 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-2-305


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008). [CrossRef]
  2. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530-4535 (2007). [CrossRef] [PubMed]
  3. T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. De Sario, V. Marrocco, V. Petruzzelli, and F. Prudenzano, “Fabrication of force sensors based on two-dimensional photonic crystal technology,” Microelectron. Eng. 84, 1450-1453 (2007). [CrossRef]
  4. T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56-59 (2006). [CrossRef]
  5. C. Kang and S. M. Weiss, “Photonic crystal with multiple-hole defect for sensor applications,” Opt. Express 16, 18188-18193 (2008). [CrossRef] [PubMed]
  6. S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709-11717 (2008). [CrossRef] [PubMed]
  7. T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, “Photonic crystal gas sensors,” Proc. SPIE 5511, 61-70 (2004). [CrossRef]
  8. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093-1095 (2004). [CrossRef] [PubMed]
  9. S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff, and S. Chakrabarti, “Photonic crystal microcavity source-based chemical sensor,” Proc. SPIE 6005, 600504 (2005). [CrossRef]
  10. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  11. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670-684 (2002). [PubMed]
  12. F. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144-148 (2004). [CrossRef] [PubMed]
  13. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984). [CrossRef]
  14. J. Bennes, F. Cherioux, and S. Alzuaga, “Droplet ejector using surface acoustic waves,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2005), pp. 823-826.
  15. R. Rella, J. Spadavecchia, G. Ciccarella, P. Siciliano, G. Vasapollo, and L. Valli, “Optochemical vapour detection using spin coated thin films of metal substituted phtalocyanines,” Sens. Actuators B 89, 86-91 (2003). [CrossRef]
  16. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).
  17. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain (Artech House, 2005).
  18. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M.-L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005). [CrossRef]
  19. I. Leray, M.-C. Vernières, and C. Bied-Charreton, “Porphyrins as probe molecules in the detection of gaseous pollutants: detection of benzene using cationic porphyrins in polymer films,” Sens. Actuators B Chem. 54, 243-251 (1999). [CrossRef]
  20. G. Burr, S. Diziain, and M.-P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express 16, 6302-6316 (2008). [CrossRef] [PubMed]
  21. M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal,” J. Opt. Soc. Am. B 24, 1416-1422 (2007). [CrossRef]
  22. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020-1028 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited