OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 311–317

Photorefractive vectorial wave mixing in different geometries

Roman V. Romashko, Salvatore Di Girolamo, Yuri N. Kulchin, and Alexei A. Kamshilin  »View Author Affiliations

JOSA B, Vol. 27, Issue 2, pp. 311-317 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze vectorial wave mixing in a photorefractive crystal of cubic symmetry in different geometries of beam interactions—reflection, transmission, and orthogonal. It is shown that orthogonal geometry in contrast with others supports an efficient phase demodulation of a depolarized object wave in linear mode without using any polarization-filtering elements. As a result adaptive interferometers based on the orthogonal geometry can provide a higher signal-to-noise ratio due to lower noise and lower optical losses.

© 2010 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(120.1088) Instrumentation, measurement, and metrology : Adaptive interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 2, 2009
Revised Manuscript: November 25, 2009
Manuscript Accepted: December 14, 2009
Published: January 22, 2010

Roman V. Romashko, Salvatore Di Girolamo, Yuri N. Kulchin, and Alexei A. Kamshilin, "Photorefractive vectorial wave mixing in different geometries," J. Opt. Soc. Am. B 27, 311-317 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Wagner and J. B. Spicer, “Theoretical noise-limited sensitivity of classical interferometry,” J. Opt. Soc. Am. B 4, 1316-1326 (1987). [CrossRef]
  2. T. J. Hall, M. A. Fiddy, and M. S. Ner, “Detector for an optical-fiber acoustic sensor using dynamic holographic interferometry,” Opt. Lett. 5, 485-487 (1980). [CrossRef] [PubMed]
  3. R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233-3235 (1991). [CrossRef]
  4. S. I. Stepanov, “Application of photorefractive crystals,” Rep. Prog. Phys. 57, 39-116 (1994). [CrossRef]
  5. A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009). [CrossRef]
  6. S. Di Girolamo, A. A. Kamshilin, R. V. Romashko, Y. N. Kulchin, and J.-C. Launay, “Sensing of multimode-fiber strain by a dynamic photorefractive hologram,” Opt. Lett. 32, 1821-1823 (2007). [CrossRef] [PubMed]
  7. S. Di Girolamo, R. V. Romashko, Y. N. Kulchin, and A. A. Kamshilin, “Orthogonal geometry of wave interaction in a photorefractive crystal for linear phase demodulation,” Opt. Commun. 283, 128-131 (2010). [CrossRef]
  8. B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial wave coupling in cubic crystals,” Phys. Rev. E 60, 3332-3352 (1999). [CrossRef]
  9. A. A. Kamshilin and A. I. Grachev, “Adaptive interferometer based on wave mixing in a photorefractive crystal under alternating electric field,” Appl. Phys. Lett. 81, 2923-2925 (2002). [CrossRef]
  10. H. J. Eichler, Y. Ding, and B. Smandek, “Photorefractive two-wave mixing in semiconductors of the 43m space group in general spatial orientation,” Phys. Rev. A 52, 2411-2418 (1995). [CrossRef] [PubMed]
  11. A. A. Kamshilin, S. V. Miridonov, M. G. Miteva, and E. V. Mokrushina, “Holographic recording in orthogonal beams in titanosillenite crystals,” Sov. Phys. Tech. Phys. 34, 66-68 (1989).
  12. M. Georges, G. Pauliat, E. Weidner, S. Giet, C. Thizy, V. S. Scauflaire, P. Lemaire, and G. Roosen, Photorefractive Effects, Materials, and Devices, Vol. 87 of OSA Trends in Optics and Photonics, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds. (Optical Society of America, 2003), pp. 511-516.
  13. S. I. Stepanov, “Adaptive interferometry: a new area of applications of photorefractive crystals,” in International Trends in Optics, J.W.Goodman, ed. (Academic, 1991), pp. 125-140.
  14. S. M. Hughes and D. Z. Anderson, “Modulation-enhanced sensitivity of holographic interferometry,” Appl. Opt. 46, 7868-7871 (2007). [CrossRef] [PubMed]
  15. K. V. Shcherbin and M. B. Klein, “Adaptive interferometers with no external field using reflection gratings in CdTe:Ge at 1550 nm,” Opt. Commun. 282, 2580-2585 (2009). [CrossRef]
  16. P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, L.-A. de Montmorillon, and G. Roosen, “Polarization independent phase demodulation using photorefractive two-wave mixing,” Appl. Phys. Lett. 74, 3087-3089 (1999). [CrossRef]
  17. S. Di Girolamo, A. A. Kamshilin, R. V. Romashko, Y. N. Kulchin, and J.-C. Launay, “Fast adaptive interferometer on dynamic reflection hologram in CdTe:V,” Opt. Express 15, 545-555 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited