OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 323–327

Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters

Jin Tao, Xu Guang Huang, Xianshi Lin, Jihuan Chen, Qin Zhang, and Xiaopin Jin  »View Author Affiliations


JOSA B, Vol. 27, Issue 2, pp. 323-327 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000323


View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters are systematically investigated. It is found that the asymmetrical double-sided teeth-shaped waveguide structure can realize the function of a two-wavelength filter, and its two wavelengths are linear with the depths of the two-sided teeth, respectively. It is also found that a staggered double-sided teeth-shaped structure exahibits a wide and sharp bandgap. Double-sided teeth-shaped filters are of ultracompact size, in the length of a few hundred nanometers. The finite-difference time-domain method is employed in the simulations. Our results may open a way to construct nanoscale waveguide filters for high-density nanoplasmonic integration circuits.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

History
Original Manuscript: September 25, 2009
Manuscript Accepted: October 16, 2009
Published: January 22, 2010

Citation
Jin Tao, Xu Guang Huang, Xianshi Lin, Jihuan Chen, Qin Zhang, and Xiaopin Jin, "Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters," J. Opt. Soc. Am. B 27, 323-327 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-2-323


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, 1998).
  2. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645-6650 (2005). [CrossRef] [PubMed]
  3. S. Xiao and N. A. Mortensens, “Resonant-tunneling-assisted crossing for subwavelength plasmonic slot waveguides,” Opt. Express 16, 14997-15005 (2008). [CrossRef] [PubMed]
  4. Z. Mei and D. Zhao, “Propagation of Laguerre-Gaussian and elegant Laguerre-Gaussian beams in apertured fractional Hankel transform systems,” J. Opt. Soc. Am. A 21, 2375-2381 (2004). [CrossRef]
  5. T. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652-9659 (2005). [CrossRef] [PubMed]
  6. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  7. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795-10800 (2005). [CrossRef] [PubMed]
  8. H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025-3029 (2008). [CrossRef]
  9. B. Wang and G. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992-1994 (2004). [CrossRef] [PubMed]
  10. Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006). [CrossRef]
  11. B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89, 133106 (2006). [CrossRef]
  12. B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surface,” Appl. Phys. Lett. 87, 013107 (2005). [CrossRef]
  13. W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91, 143121 (2007). [CrossRef]
  14. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 912-918 (2006). [CrossRef]
  15. A. Hossieni and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14, 11318-11323 (2006). [CrossRef] [PubMed]
  16. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475-1480 (2008). [CrossRef] [PubMed]
  17. X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874-2876 (2008). [CrossRef] [PubMed]
  18. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006). [CrossRef]
  19. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” Infrared Phys. Technol. 19, 91-93 (2007).
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  21. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited