OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 328–332

Implementation of two optimal symmetric economical state-dependent cloners in an ion-trap system

Gui-Yu Hu, Hong-Bo Wan, and Liu Ye  »View Author Affiliations


JOSA B, Vol. 27, Issue 2, pp. 328-332 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000328


View Full Text Article

Enhanced HTML    Acrobat PDF (102 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose unified scheme to realize optimal 1 3 symmetric economical phase-covariant cloning (EPCC) and optimal 1 3 symmetric economical real state cloning (SERS) in the context of an ion-trap system. In this approach, the vibrational mode is not used to act as memory and the two cloners work without ancilla, thus it is likely to be much less sensitive to noise and decoherence. By adjusting tunable time parameters, our system can also perform optimal symmetric (asymmetric) universal quantum cloning and optimal symmetric (asymmetric) phase-covariant quantum cloning. Based on the advancement of experimental technique in an ion-trap system, the scheme is feasible and the symmetric economical state-dependent cloning is optimal.

© 2010 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.7010) Atomic and molecular physics : Laser trapping

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: May 14, 2009
Revised Manuscript: December 29, 2009
Manuscript Accepted: January 5, 2010
Published: January 22, 2010

Citation
Gui-Yu Hu, Hong-Bo Wan, and Liu Ye, "Implementation of two optimal symmetric economical state-dependent cloners in an ion-trap system," J. Opt. Soc. Am. B 27, 328-332 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-2-328


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802-803 (1982). [CrossRef]
  2. V. Bužek and M. Hillery, “Quantum copying: Beyond the no-cloning theorem,” Phys. Rev. A 54, 1844-1852 (1996). [CrossRef] [PubMed]
  3. D. Bruss, M. Cinchetti, G. M. D'Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000). [CrossRef]
  4. W. H. Zhang, T. Wu, L. Ye, and J. L. Dai, “Optimal real state cloning in d dimensions,” Phys. Rev. A 75, 044303 (2007). [CrossRef]
  5. W. H. Zhang and L. Ye, “Optimal asymmetric phase-covariant and real state cloning in d dimensions,” New J. Phys. 9, 318 (2007). [CrossRef]
  6. C. S. Niu and R. B. Griffiths, “Two-qubit copying machine for economical quantum eavesdropping,” Phys. Rev. A 60, 2764-2776 (1999). [CrossRef]
  7. F. Buscemi, G. M. D'Ariano, and Chiara Macchiavello, “Economical phase-covariant cloning of qudits,” Phys. Rev. A 71, 042327 (2005). [CrossRef]
  8. T. Durt, J. Fiurášek, and N. J. Cerf, “Economical quantum cloning in any dimension,” Phys. Rev. A 72, 052322 (2005). [CrossRef]
  9. T. Durt and J. Du, “Characterization of low-cost one-to-two qubit cloning,” Phys. Rev. A 69, 062316 (2004). [CrossRef]
  10. X. B. Zou, Y. L. Dong, and G. C. Guo, “Scheme for realization ancilla-free 1-->∞ economical phase-covariant quantum cloning of qubit and qutrits,” Phys. Lett. A 360, 44-48 (2006). [CrossRef]
  11. S. B. Zheng and G. C. Guo, “Entangling and cloning machine with increasing robustness against decoherence as the number of qubits increases,” Phys. Rev. A 72, 064303 (2005). [CrossRef]
  12. W. H. Zhang and Liu Ye, “Scheme to implement general economical phase-covariant telecloning,” Phys. Lett. A 353, 130-137 (2006). [CrossRef]
  13. J. F. Du, T. Durt, P. Zou, H. L, and A. Ekert, “Experimental quantum cloning with prior partial information,” Phys. Rev. Lett. 95, 030502 (2005). [CrossRef]
  14. H. W. Chen, X. Y. Zhou, D. Suter, and J. F. Du, “Experimental realization of 1-->2 asymmetric phase-covariant quantum cloning,” Phys. Rev. A 75, 012317 (2007). [CrossRef]
  15. M. Sabuncu, U. L. Andersen, and G. Leuchs, “Experimental demonstration of continuous variable cloning with phase-conjugate inputs,” Phys. Rev. Lett. 98, 170503 (2007). [CrossRef]
  16. M. Sabuncu, G. Leuchs, and U. L. Andersen, “Experimental continuous-variable cloning of partial quantum information,” Phys. Rev. A 78, 052312 (2008). [CrossRef]
  17. J. S. Xu, C. F. Li, L. Chen, X. B. Zou and G. C. Guo, “Experimental realization of the optimal universal and phase-covariant quantum cloning machines,” Phys. Rev. A 78, 032322 (2008). [CrossRef]
  18. D. K. L. Oi, S. J. Dwvitt, and L. C. L. Hollenberg, “Scalable error correction in distributed ion trap computers,” Phys. Rev. A 74, 052313 (2006). [CrossRef]
  19. I. Lizuain and G. Muga, “Vibronic Rabi resonances in harmonic and hard-wall ion traps for arbitrary laser intensity and detuning,” Phys. Rev. A 75, 033613 (2007). [CrossRef]
  20. X. L. Deng, D. Porras, and J. I. Cirac, “Quantum phases of interacting phonons in ion traps,” Phys. Rev. A 77, 033403 (2008). [CrossRef]
  21. D. Wang, T. Hansson, A. Larson, H. O. Karlsson, and J. Larson, “Quantum interference structures in trapped-ion dynamics beyond the Lamb-Dicke and rotating wave approximations,” Phys. Rev. A 77, 053808 (2008). [CrossRef]
  22. A. T. Grier, M. Cetina, F. Orucevic, and V. Vuletic, “Observation of cold collisions between trapped ions and trapped atoms,” Phys. Rev. Lett. 102, 223201 (2009). [CrossRef] [PubMed]
  23. D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, and C. Langer, “Creation of a six-atom 'Schrödinger cat' state,” Nature 438, 639-642 (2005). [CrossRef] [PubMed]
  24. H. Haffner, W. Hansel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Korber, U. D. Rapol, M. Riebe, and P. O. Schmidt, “Scalable multiparticle entanglement of trapped ions,” Nature 438, 643-646 (2005). [CrossRef] [PubMed]
  25. L. Deslauriers, S. Olmschenk, D. Stick, W. K. Hensinger, J. Sterk, and C. Monroe, “Scaling and suppression of anomalous heating in ion traps,” Phys. Rev. Lett. 97, 103007 (2006). [CrossRef] [PubMed]
  26. J. Labaziewicz, Y. Ge, P. Antohi, D. Leibrandt, K. R. Brown, and I. L. Chuang, “Suppression of heating rates in cryogenic surface-electrode ion traps,” Phys. Rev. Lett. 100, 013001 (2008). [CrossRef] [PubMed]
  27. R. Dubessy, T. Coudreau, and L. Guidoni, “Electric field noise above surfaces: A model for heating-rate scaling law in ion traps,” Phys. Rev. A 80, 031402(R) (2009). [CrossRef]
  28. R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008-1015 (2008). [CrossRef] [PubMed]
  29. L.-M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, Jr., and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006). [CrossRef]
  30. D. B. Hume, C. W. Chou, T. Rosenband, and D. J. Wineland, “Preparation of Dicke states in an ion chain,” Phys. Rev. A 80, 052302 (2009). [CrossRef]
  31. V. Bužek, V. Vedral, M. Plenio, P. Knight, and M. Hillery, “Broadcasting of entanglement via local copying,” Phys. Rev. A 55, 3327-3332 (1997). [CrossRef]
  32. J. Bae and A. Acín, “Asymptotic quantum cloning is state estimation,” Phys. Rev. Lett. 97, 030402 (2006). [CrossRef] [PubMed]
  33. P. Navez and N. J. Cerf, “Cloning a real d-dimensional quantum state on the edge of the no-signaling condition,” Phys. Rev. A 68, 032313 (2003). [CrossRef]
  34. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-149 (2002). [CrossRef]
  35. H. Fan, K. Matsumoto, X. B. Wang, and M. Wadati, “Quantum cloning machines for equatorial qubits,” Phys. Rev. A 65, 012304 (2001). [CrossRef]
  36. S. B. Zheng, “Splitting quantum information via W states,” Phys. Rev. A 74, 054303 (2006). [CrossRef]
  37. S. B. Zheng, “Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion,” Phys. Rev. A 68, 035801 (2003). [CrossRef]
  38. A. Sørensen and K. Mølmer, “Quantum computation with ions in thermal motion,” Phys. Rev. Lett. 82, 1971-1974 (1999). [CrossRef]
  39. M. Riebe, H. Haffner, C. F. Roos, W. Hansel, J. Benhelm, G. P. T. Lancaster, T. W. Korber, C. Becher, F. Schmidt-kaler, and D. F. V. James, “Deterministic quantum teleportation with atoms,” Nature 429, 734-737 (2004). [CrossRef] [PubMed]
  40. D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, “Generation of nonclassical motional states of a trapped atom,” Phys. Rev. Lett. 76, 1796-1799 (1996). [CrossRef] [PubMed]
  41. C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and D. J. Wineland, “Experimental entanglement of four particles,” Nature 404, 256-259 (2000). [CrossRef] [PubMed]
  42. C. Ospelkaus, C. E. Langer, J. M. Amini, K. R. Brown, D. Leibfried, and D. J. Wineland, “Trapped-ion quantum logic gates based on oscillating magnetic fields,” Phys. Rev. Lett. 101, 090502 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited