OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 333–337

Self-consistent phase determination for Wigner function reconstruction

Maria Bondani, Alessia Allevi, and Alessandra Andreoni  »View Author Affiliations


JOSA B, Vol. 27, Issue 2, pp. 333-337 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000333


View Full Text Article

Enhanced HTML    Acrobat PDF (519 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the reconstruction of the Wigner function of a classical phase-sensitive state, a pulsed coherent state, by measurements of the distributions of detected-photons of the state displaced by a coherent probe field. By using a hybrid photodetector operated above its photon-resolving regime, we obtain both the statistics at different values of the probe field and the values of the probe phase required to reconstruct the Wigner function.

© 2010 Optical Society of America

OCIS Codes
(230.5160) Optical devices : Photodetectors
(270.5290) Quantum optics : Photon statistics

ToC Category:
Quantum Optics

History
Original Manuscript: June 22, 2009
Revised Manuscript: October 23, 2009
Manuscript Accepted: October 23, 2009
Published: January 25, 2010

Citation
Maria Bondani, Alessia Allevi, and Alessandra Andreoni, "Self-consistent phase determination for Wigner function reconstruction," J. Opt. Soc. Am. B 27, 333-337 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-2-333


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Wenger, R. Tualle-Brouri, and P. Grangier, “Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification,” Opt. Lett. 29, 1267-1269 (2004). [CrossRef] [PubMed]
  2. H. Vahlbrouch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100, 033602 (2008). [CrossRef]
  3. J. Wenger, R. Tualle-Brouri, and P. Grangier, “Non-Gaussian statistics from individual pulses of squeezed light,” Phys. Rev. Lett. 92, 153601 (2004). [CrossRef] [PubMed]
  4. A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum homodyne tomography of a two-photon Fock state,” Phys. Rev. Lett. 96, 213601 (2006). [CrossRef] [PubMed]
  5. A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007). [CrossRef] [PubMed]
  6. A. Zavatta, V. Parigi, and M. Bellini, “Experimental nonclassicality of single-photon-added thermal light states,” Phys. Rev. A 75, 052106 (2007). [CrossRef]
  7. M. Bondani, A. Allevi, G. Zambra, M. G. A. Paris, and A. Andreoni, “Sub-shot-noise photon-number correlation in a mesoscopic twin-beam of light,” Phys. Rev. A 76, 013833 (2007). [CrossRef]
  8. A. I. Lvovsky and S. A. Babichev, “Synthesis and tomographic characterization of the displaced Fock state of light,” Phys. Rev. A 66, 011801(R) (2002). [CrossRef]
  9. For a review, see A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum state tomography,” Rev. Mod. Phys. 81, 299-332 (2009). [CrossRef]
  10. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244-1247 (1993). [CrossRef] [PubMed]
  11. K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Phys. Rev. A 40, 2847-2849(R) (1989). [CrossRef] [PubMed]
  12. H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177-179 (1983). [CrossRef] [PubMed]
  13. G. L. Abbas, V. W. S. Chan, and T. K. Yee, “Local-oscillator excess-noise suppression for homodyne and heterodyne detection,” Opt. Lett. 8, 419-421 (1983). [CrossRef] [PubMed]
  14. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001). [CrossRef] [PubMed]
  15. J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D 32, 391-396 (2005). [CrossRef]
  16. A. Zavatta, S. Viciani, and M. Bellini, “Non-classical field characterization by high-frequency, time-domain quantum homodyne tomography,” Laser Phys. Lett. 3, 3-16 (2006). [CrossRef]
  17. K. E. Cahill and R. J. Glauber, “Density operators and quasi-probability distributions,” Phys. Rev. 177, 1882-1902 (1969). [CrossRef]
  18. M. Bondani, A. Allevi, and A. Andreoni, “Wigner function of pulsed fields by direct detection,” Opt. Lett. 34, 1444-1446 (2009). [CrossRef] [PubMed]
  19. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambrige Univ. Press, 1995).
  20. M. Bondani, A. Allevi, and A. Andreoni, “Light statistics by non-calibrated linear photodetectors,” Adv. Sci. Lett. 2, 463-468 (2009). [CrossRef]
  21. E. Casini and A. Martinelli are preparing a manuscript to be called “A family of distributions stable with respect to random sums.”
  22. K. Banaszek and K. Wódkiewicz, “Direct probing of quantum phase space by photon counting,” Phys. Rev. Lett. 76, 4344-4347 (1996). [CrossRef] [PubMed]
  23. F. T. Arecchi, “Measurement of the statistical distribution of Gaussian and laser sources,” Phys. Rev. Lett. 15, 912-916 (1965). [CrossRef]
  24. G. Zambra, M. Bondani, A. S. Spinelli, and A. Andreoni, “Counting photoelectrons in the response of a photomultiplier tube to single picosecond light pulses,” Rev. Sci. Instrum. 75, 2762-2765 (2004). [CrossRef]
  25. J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74, 902-904 (1999). [CrossRef]
  26. E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y. Yamamoto, “Direct observation of nonclassical photon statistics in parametric down-conversion,” Phys. Rev. Lett. 92, 113602 (2004). [CrossRef] [PubMed]
  27. A. V. Akindinov, A. N. Martemianov, P. A. Polozov, V. M. Golovin, and E. A. Grigoriev, “New results on MRS APDs,” Nucl. Instrum. Methods Phys. Res. A 387, 231-234 (1997). [CrossRef]
  28. D. Achilles, C. Silberhorn, C. Sliwá, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number-resolving detection using time-multiplexing,” J. Mod. Opt. 51, 1499-1515 (2004).
  29. K. Laiho, M. Avenhaus, K. N. Cassemiro, and Ch. Silberhorn, “Direct probing of the Wigner function by time-multiplexed detection of photon statistics,” New J. Phys. 11, 043012 (2009). [CrossRef]
  30. J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, Jr., and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67, 061801(R) (2003). [CrossRef]
  31. K. Banaszek, C. Radzewicz, K. Wódkiewicz, and J. S. Krasiński, “Direct measurement of the Wigner function by photon counting,” Phys. Rev. A 60, 674-677 (1999). [CrossRef]
  32. M. Bondani, A. Allevi, A. Agliati, and A. Andreoni, “Self-consistent characterization of light statistics,” J. Mod. Opt. 56, 226-231 (2009). [CrossRef]
  33. A. Andreoni and M. Bondani, “Photon statistics in the macroscopic realm measured without photon-counters,” Phys. Rev. A 80, 013819 (2009). [CrossRef]
  34. L. Mandel, E. C. G. Sudarshan, and E. Wolf, “Theory of photoelectric detection of light fluctuations,” Proc. Phys. Soc. London 84, 435-444 (1964). [CrossRef]
  35. K. Banaszek, A. Dragan, K. Wódkiewicz, and C. Radzewicz, “Direct measurement of optical quasi-distribution functions: Multimode theory and homodyne tests of Bell's inequalities,” Phys. Rev. A 66, 043803 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited