OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 350–353

Compensating for beamsplitter asymmetries in quantum interference experiments

J. Liang and T. B. Pittman  »View Author Affiliations

JOSA B, Vol. 27, Issue 2, pp. 350-353 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (114 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The visibility of the quantum interference “dip” seen in the Hong–Ou–Mandel experiment is optimized when a symmetric 50 50 beamsplitter is used in the interferometer. Here we show that the reduction in visibility caused by an asymmetric beamsplitter can be compensated by manipulating the polarization states of the two input photons. We experimentally demonstrate this by using a highly asymmetric 10 90 beamsplitter, and converting an initial dip visibility of 22% to a compensated value of 99%.

© 2010 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: August 26, 2009
Revised Manuscript: December 14, 2009
Manuscript Accepted: December 18, 2009
Published: January 29, 2010

J. Liang and T. B. Pittman, "Compensating for beamsplitter asymmetries in quantum interference experiments," J. Opt. Soc. Am. B 27, 350-353 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Fearn and R. Loudon, “Theory of two-photon interference,” J. Opt. Soc. Am. B 6, 917-927 (1989). [CrossRef]
  2. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044-2046 (1987). [CrossRef] [PubMed]
  3. Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921-2924 (1988). [CrossRef] [PubMed]
  4. J. C. F. Matthews, A. Politi, A. Stefanov, and J. O'Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346-350 (2009). [CrossRef]
  5. T. C. Ralph, A. G. White, W. J. Munro, and G. J. Milburn, “Simple scheme for efficient linear optics quantum gates,” Phys. Rev. A 65, 012314 (2001). [CrossRef]
  6. H. Hofmann and S. Takeuchi, “Quantum phase gate for photonic qubits using only beam splitters and postselection,” Phys. Rev. A 66, 024308 (2002). [CrossRef]
  7. J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264-267 (2003). [CrossRef] [PubMed]
  8. K. Sanaka, T. Jennewein, J.-W. Pan, K. Resch, and A. Zeilinger, “Experimental nonlinear sign shift for linear optics quantum computation,” Phys. Rev. Lett. 92, 017902 (2004). [CrossRef] [PubMed]
  9. R. Filip, “Quantum partial teleportation as optimal cloning at a distance,” Phys. Rev. A 69, 052301 (2004). [CrossRef]
  10. Z. Zhao, A.-N. Zhang, X.-Q. Zhou, Y.-A. Chen, C.-Y. Lu, A. Karlsson, and J.-W. Pan, “Experimental realization of optimal asymmetric cloning and telecloning via partial teleportation,” Phys. Rev. Lett. 95, 030502 (2005). [CrossRef] [PubMed]
  11. L. Bartuskova, M. Dusek, A. Cernoch, J. Soubusta, and J. Fiurasek, “Fiber-optics implementation of an asymmetric phase-covariant quantum cloner,” Phys. Rev. Lett. 99, 120505 (2007). [CrossRef] [PubMed]
  12. K. Sanaka, “Linear optical extraction of photon-number Fock states from coherent states,” Phys. Rev. A 71, 021801 (2005). [CrossRef]
  13. K. Sanaka, K. J. Resch, and A. Zeilinger, “Filtering out photonic Fock states,” Phys. Rev. Lett. 96, 083601 (2006). [CrossRef] [PubMed]
  14. K. J. Resch, J. L. O'Brien, T. J. Weinhold, K. Sanaka, B. P. Lanyon, N. K. Langford, and A. G. White, “Entanglement generation by Fock-state filtration,” Phys. Rev. Lett. 98, 203602 (2007). [CrossRef] [PubMed]
  15. J. Fiurasek, “Conditional generation of N-photon entangled states of light,” Phys. Rev. A 65, 053818 (2002). [CrossRef]
  16. H. Wang and T. Kobayashi, “Phase measurement at the Heisenberg limit with three photons,” Phys. Rev. A 71, 021802(R) (2005). [CrossRef]
  17. B. H. Liu, F. W. Sun, Y. X. Gong, Y. F. Huang, G. C. Guo, and Z. Y. Ou, “Four-photon interference with asymmetric beam splitters,” Opt. Lett. 32, 1320-1322 (2007). [CrossRef] [PubMed]
  18. K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O'Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98, 223601 (2007). [CrossRef] [PubMed]
  19. B. H. Liu, F. W. Sun, Y. X. Gong, Y. F. Huang, Z. Y. Ou, and G. C. Guo, “Demonstration of the three-photon de Broglie wavelength by projection measurement,” Phys. Rev. A 77, 023815 (2008). [CrossRef]
  20. Z. Y. Ou, “Characterizing temporal distinguishability of an N-photon state by a generalized photon bunching effect with multiphoton interference,” Phys. Rev. A 77, 043829 (2008). [CrossRef]
  21. Z. Y. Ou, B. Liu, F. Sun, Y. X. Gong, Y. Huang, and G. Guo, “Demonstration of temporal distinguishability of three and four photons with asymmetric beam splitter,” in Coherence and Quantum Optics IX, eds. N.P.Bigelow, J.H.Eberly, and C.R.Stroud (Optical Society of America, 2008), p. 450.
  22. J. G. Rarity and P. R. Tapster, “Fourth-order interference in parametric downconversion,” J. Opt. Soc. Am. B 6, 1221-1226 (1989). [CrossRef]
  23. Once optimized, we found the overall birefringence of the system to be fairly insensitive to the wavelength difference between the 803 nm beam and the 814 nm PDC signal, and typically obtained better results after performing the calibration with the much stronger 803 nm beam.
  24. M. Suda, H. Rauch, and M. Peev, “New intensity and visibility aspects of a double-loop neutron interferometer,” J. Opt. B: Quantum Semiclassical Opt. 6, 345-350 (2004). [CrossRef]
  25. N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. OBrien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005). [CrossRef] [PubMed]
  26. N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005). [CrossRef] [PubMed]
  27. R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-NOT gate without path interference,” Phys. Rev. Lett. 95, 210506 (2005). [CrossRef] [PubMed]
  28. A. Cernoch, L. Bartuskova, J. Soubusta, M. Jezek, J. Fiurasek, and M. Dusek, “Experimental phase-covariant cloning of polarization states of single photons,” Phys. Rev. A 74, 042327 (2006). [CrossRef]
  29. J. Soubusta, L. Bartuskova, A. Cernoch, J. Fiurasek, and M. Dusek, “Several experimental realizations of symmetric phase-covariant quantum cloners of single-photon qubits,” Phys. Rev. A 76, 042318 (2007). [CrossRef]
  30. J. Soubusta, L. Bartuskova, A. Cernoch, M. Dusek, and J. Fiurasek, “Experimental asymmetric phase-covariant quantum cloning of polarization qubits,” Phys. Rev. A 78, 052323 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited