OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 358–362

Symmetric and adjustable phase of higher-order reflected light from two-dimensional photonic crystal

Qiao-Feng Dai, Sheng Lan, and He-Zhou Wang  »View Author Affiliations


JOSA B, Vol. 27, Issue 3, pp. 358-362 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000358


View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Investigation on the phase shifts of higher-order reflected light from a two-dimensional photonic crystal (PC) demonstrates that the phase shift of m th order reflected light is symmetric with respect to the line of k x = m π b in the frequency-wave vector domain, where k x and b denote the incident wave vector component along the surface and the period of the PC along the surface, respectively, and m is an integer. Such phase symmetry originates from the periodicity of a PC along the surface. When higher-order propagating waves appear between two band edges of a stop band, the phase change of the 0th order reflection is generally not π as reported before. Moreover, the reflection phase can be adjusted and designed by changing the cylinder radii of the surface layer. It provides a robust way to achieve a giant Goos–Hänchen shift, which is described in detail as an example, and superluminal propagation from a PC.

© 2010 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(120.5700) Instrumentation, measurement, and metrology : Reflection
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 3, 2009
Revised Manuscript: November 19, 2009
Manuscript Accepted: December 17, 2009
Published: February 2, 2010

Citation
Qiao-Feng Dai, Sheng Lan, and He-Zhou Wang, "Symmetric and adjustable phase of higher-order reflected light from two-dimensional photonic crystal," J. Opt. Soc. Am. B 27, 358-362 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-3-358


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).
  2. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1960).
  3. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  4. G. Nimtz, A. Haibel, and R.-M. Vetter, “Pulse reflection by photonic barriers,” Phys. Rev. E 66, 037602 (2002). [CrossRef]
  5. D. R. Solli, C. F. McCormick, and R. Y. Chiao, “Fast light, slow light, and phase singularities: a connection to generalized weak values,” Phys. Rev. Lett. 92, 043601 (2004). [CrossRef] [PubMed]
  6. H. G. Winful, “Nature of 'superluminal' barrier tunneling,” Phys. Rev. Lett. 90, 023901 (2003). [CrossRef] [PubMed]
  7. L.-G. Wang, H. Chen, and S.-Y. Zhu, “Superluminal pulse reflection and transmission in a slab system doped with dispersive materials,” Phys. Rev. E 70, 066602 (2004). [CrossRef]
  8. I. Shadrivov, A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713-2715 (2003). [CrossRef]
  9. X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372-374 (2004). [CrossRef]
  10. L. G. Wang and S. Y. Zhu, “Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals,” Opt. Lett. 31, 101-103 (2006). [CrossRef] [PubMed]
  11. H. M. Lai and S. W. Chan, “Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett. 27, 680-682 (2002). [CrossRef]
  12. D. Felbacq and R. Smaâli, “Bloch modes dressed by evanescent waves and the generalized Goos-Hänchen effect in photonic crystals,” Phys. Rev. Lett. 92, 193902 (2004). [CrossRef] [PubMed]
  13. J. He, J. Yi, and S. He, “Giant negative Goos-Hänchen shifts for a photonic crystal with a negative effective index,” Opt. Express 14, 3024-3029 (2006). [CrossRef] [PubMed]
  14. R. Gruschinski, G. Nimtz, and A. A. Stahlhofen, “Resonance-like Goos-Hänchen shift induced by nano-metal films,” Ann. Phys. 17, 917-921 (2008). [CrossRef]
  15. Z.-Y. Li and K.-M. Ho, “Light propagation in semi-infinite photonic crystals and related waveguide structures,” Phys. Rev. B 68, 155101 (2003). [CrossRef]
  16. E. Istrate, A. A. Green, and E. H. Sargent, “Behavior of light at photonic crystal interfaces,” Phys. Rev. B 71, 195122 (2005). [CrossRef]
  17. E. Istrate and E. H. Sargent, “Measurement of the phase shift upon reflection from photonic crystals,” Appl. Phys. Lett. 86, 151112 (2005). [CrossRef]
  18. M. Golosovsky, Y. Neve-Oz, and D. Davidov, “Phase shift on reflection from metallodielectric photonic bandgap materials,” Phys. Rev. B 70, 115105 (2004). [CrossRef]
  19. Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89, 061121 (2006). [CrossRef]
  20. G. Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gösele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 614-616 (2003). [CrossRef]
  21. D. Maystre, “Photonic crystal diffraction gratings,” Opt. Express 8, 209-216 (2001). [CrossRef] [PubMed]
  22. D. Labiloy, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, D. Cassagne, C. Jouanin, R. Houdré, U. Oesterle, and V. Bardinal, “Diffraction efficiency and guided light control by two-dimensional photonic-bandgap lattices,” IEEE J. Quantum Electron. 35, 1045-1052 (1999). [CrossRef]
  23. R. M. Bell, J. B. Pendry, L. Martin Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306-322 (1995). [CrossRef]
  24. M. Ibanescu, E. J. Reed, and J. D. Joannopoulos, “Enhanced photonic bandgap confinement via Van Hove saddle point singularities,” Phys. Rev. Lett. 96, 033904 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited