OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 363–369

Electronic (population) lensing versus thermal lensing in Yb:YAG and Nd:YAG laser rods and disks

Elena Anashkina and Oleg Antipov  »View Author Affiliations

JOSA B, Vol. 27, Issue 3, pp. 363-369 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (480 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A comparative study of electronic lenses (caused by population change of ground and excited states having different polarizabilities) and thermal lenses induced in Yb:YAG and Nd:YAG rods and disks under lasing and nonlasing conditions is carried out. The transient electronic lens can predominate over the thermal one in the pulsed-pump regime, whereas the stationary thermal lens may be predominant at CW broad pumping. The electronic lens effect is stronger in Yb:YAG than in Nd:YAG crystal.

© 2010 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(140.6810) Lasers and laser optics : Thermal effects
(160.5690) Materials : Rare-earth-doped materials
(350.6830) Other areas of optics : Thermal lensing

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 5, 2009
Revised Manuscript: November 11, 2009
Manuscript Accepted: December 16, 2009
Published: February 2, 2010

Elena Anashkina and Oleg Antipov, "Electronic (population) lensing versus thermal lensing in Yb:YAG and Nd:YAG laser rods and disks," J. Opt. Soc. Am. B 27, 363-369 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  2. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89-153 (2006). [CrossRef]
  3. W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D: Appl. Phys. 34, 2381-2395 (2001). [CrossRef]
  4. A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 983-995 (2009). [CrossRef]
  5. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion induced heat generation and thermal lensing in Nd: YLF and Nd:YAG,” Phys. Rev. B 58, 16076-16092 (1998). [CrossRef]
  6. C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B 26, 1002-1007 (2009). [CrossRef]
  7. H. Yoshida, N. Takeuchi, H. Okada, H. Fujita, and M. Nakatsuka, “Thermal-lens-effect compensation of Nd:YAGrod laser using a solid element of negative temperature coefficient of refractive index” Jpn. J. Appl. Phys. 46, 1012-1015 (2007). [CrossRef]
  8. P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis of thermal focal length on Nd:YAG rods,” Appl. Opt. 46, 6655-6661 (2007). [CrossRef] [PubMed]
  9. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, “A 1-kV CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000). [CrossRef]
  10. R. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998). [CrossRef]
  11. O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism of refractive index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett. 31, 763-765 (2005). [CrossRef]
  12. D. N. Messias, T. Catunda, J. D. Myers, and M. J. Myers, “Nonlinear electronic line shape determination in Yb3+-doped phosphate glass,” Opt. Lett. 32, 665-667 (2007). [CrossRef] [PubMed]
  13. R. Moncorgé, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526-2530 (2008). [CrossRef]
  14. O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910-918 (2003). [CrossRef]
  15. J. Margerie, R. Moncorgé, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd:YAG laser crystal: Experiments and crystal-field calculations,” Phys. Rev. B 74, 235108-235118 (2006). [CrossRef]
  16. N. Passilly, E. Haouas, V. Ménard, R. Moncorgé, and K. Aı̈t-Ameur, “Population lensing effect in Cr:LiSAF probed by Z-scan technique,” Opt. Commun. 260, 703-707 (2006). [CrossRef]
  17. R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Index-of-refraction change in optically pumped solid-state laser materials,” Opt. Lett. 14, 1204-1206 (1989). [CrossRef] [PubMed]
  18. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon Press, 1986).
  19. R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355-1357 (2003). [CrossRef]
  20. B. A. Boly and J. H. Weiner, Theory of Thermal Stresses (Wiley, 1960).
  21. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831-1833(1990). [CrossRef]
  22. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part II: evaluation of quantum efficiencies and thermo-optic coefficients.” IEEE J. Quantum Electron. 40, 1235-1243 (2004). [CrossRef]
  23. T. A. Planchon, W. Amir, C. Childress, J. A. Squier, and C. G. Durfee, “Measurement of pump-induced transient lensing in a cryogenically-cooled high average power Ti:sapphire amplifier,” Opt. Express 16, 18557-18564 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited