OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 370–374

Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity

Ying Wang, Minwei Yang, D. N. Wang, Shujing Liu, and Peixiang Lu  »View Author Affiliations

JOSA B, Vol. 27, Issue 3, pp. 370-374 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (280 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a compact fiber in-line Mach–Zehnder interferometer for refractive index sensing with high sensitivity and precise sensing location. One arm of the interferometer contains a microcavity formed by removing part of the fiber core near the core and cladding interface by femtosecond laser micromachining, and the other arm remains in line with the remaining part of the fiber core. Such a fiber in-line Mach-Zehnder interferometer exhibits an extremely high refractive-index-sensitivity of 9370 nm /RIU (refractive index unit) within the refractive index range between 1.31 and 1.335.

© 2010 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.1150) Optical devices : All-optical devices
(320.7140) Ultrafast optics : Ultrafast processes in fibers

ToC Category:
Optical Devices

Original Manuscript: September 15, 2009
Revised Manuscript: December 11, 2009
Manuscript Accepted: December 21, 2009
Published: February 2, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Ying Wang, Minwei Yang, D. N. Wang, Shujing Liu, and Peixiang Lu, "Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity," J. Opt. Soc. Am. B 27, 370-374 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Shroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001). [CrossRef]
  2. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005). [CrossRef]
  3. K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, “A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing,” Opt. Express 15, 15848-15853 (2007). [CrossRef] [PubMed]
  4. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692-694 (1996). [CrossRef] [PubMed]
  5. D. W. Kin, Y. Zhang, K. L. Cooper, and A. Wang, “In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement,” Appl. Opt. 44, 5368-5373 (2005). [CrossRef]
  6. D. W. Kim, F. Shen, X. Chen, and A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry-Perot interferometer sensor,” Opt. Lett. 30, 3000-3002 (2005). [CrossRef] [PubMed]
  7. G. P. Agrawal, Lightwave Technology: Components and Devices, Wiley & Sons, 2004).
  8. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8-26 (2008). [CrossRef] [PubMed]
  9. R. Slavík, J. Homola, J. Čtyroky, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001). [CrossRef]
  10. V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express 13, 7609-7614 (2005). [CrossRef] [PubMed]
  11. B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt. 38, 3450-3459 (1999). [CrossRef]
  12. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett. 29, 346-348 (2004). [CrossRef] [PubMed]
  13. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711-5720 (2007). [CrossRef] [PubMed]
  14. J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 1258-1260 (2006). [CrossRef]
  15. Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20, 626-628 (2008). [CrossRef]
  16. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009). [CrossRef]
  17. C. Grillet, P. Domachuk, V. Ta'eed, E. Mägi, J. A. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440-5447 (2004). [CrossRef] [PubMed]
  18. P. Domachuk, C. Grillet, V. Ta'eed, E. Mägi, J. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Microfluidic interferometer,” Appl. Phys. Lett. 86, 024103 (2005). [CrossRef]
  19. C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81-95 (2008). [CrossRef]
  20. Y. Lai, K. Zhou, and I. Bennion, “Microchannels in conventional single-mode fibers,” Opt. Lett. 31, 2559-2661 (2006). [CrossRef] [PubMed]
  21. Y. Wang, D. N. Wang, M. Yang, W. Hong, and P. Lu, “Refractive index sensor based on a microhole in single-mode fiber created by the use of femtosecond laser micromachining,” Opt. Lett. 34, 3328-3330 (2009). [CrossRef] [PubMed]
  22. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15, 14123-14128 (2007). [CrossRef] [PubMed]
  23. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764-5769 (2008). [CrossRef] [PubMed]
  24. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677-717 (1990). [CrossRef]
  25. I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020-1028 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited