OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 382–393

Measuring absorptive two-dimensional infrared spectra using chirped-pulse upconversion detection

Jessica M. Anna, Matthew J. Nee, Carlos R. Baiz, Robert McCanne, and Kevin J. Kubarych  »View Author Affiliations


JOSA B, Vol. 27, Issue 3, pp. 382-393 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000382


View Full Text Article

Enhanced HTML    Acrobat PDF (1181 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Chirped-pulse upconversion (CPU) enables the detection of mid-infrared spectra using a silicon CCD camera by sum-frequency mixing a mid-IR field with a highly chirped near-IR (800 nm) field. Although the substantial chirp limits the spectral broadening and phase distortions caused by the inherent cross-phase modulation, the exquisite phase fidelity needed to measure a fully absorptive two-dimensional IR spectrum demands the correction of the phase distortions. We demonstrate how to correct all of the phase distortions involved in recording an absorptive 2DIR spectrum including delay stage calibrations as well as the requisite nonlinear signals. Besides the extra experimental step of the upconversion process itself, the phase correction procedure requires only the knowledge of the spectral or temporal phase of the chirped pulse. The method is demonstrated in a metal carbonyl complex, Mn 2 ( CO ) 10 , in n-hexane and methanol solvents showing that the method operates well in cases of both homogeneous and inhomogeneous broadening.

© 2010 Optical Society of America

OCIS Codes
(300.6340) Spectroscopy : Spectroscopy, infrared
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Spectroscopy

History
Original Manuscript: October 16, 2009
Revised Manuscript: December 16, 2009
Manuscript Accepted: December 18, 2009
Published: February 3, 2010

Citation
Jessica M. Anna, Matthew J. Nee, Carlos R. Baiz, Robert McCanne, and Kevin J. Kubarych, "Measuring absorptive two-dimensional infrared spectra using chirped-pulse upconversion detection," J. Opt. Soc. Am. B 27, 382-393 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-3-382


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425-463 (2003). [CrossRef] [PubMed]
  2. N. S. Ginsberg, Y. C. Cheng, and G. R. Fleming, “Two-dimensional electronic spectroscopy of molecular aggregates,” Acc. Chem. Res. 42, 1352-1363 (2009). [CrossRef] [PubMed]
  3. W. Zhuang, T. Hayashi, and S. Mukamel, “Coherent multidimensional vibrational spectroscopy of biomolecules: concepts, simulations, and challenges,” Angew. Chem. Int. Ed. 48, 3750-3781 (2009). [CrossRef]
  4. M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108, 1331-1418 (2008). [CrossRef] [PubMed]
  5. M. D. Fayer, “Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem. 60, 21-38 (2009). [CrossRef]
  6. Y. S. Kim and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics,” J. Phys. Chem. B 113, 8231-8251 (2009). [CrossRef] [PubMed]
  7. S. T. Roberts, K. Ramasesha, and A. Tokmakoff, “Structural rearrangements in water viewed through two-dimensional infrared spectroscopy,” Acc. Chem. Res. 42, 1239-1249 (2009). [CrossRef] [PubMed]
  8. P. Hamm, J. Helbing, and J. Bredenbeck, “Two-dimensional infrared spectroscopy of photoswitchable peptides,” Annu. Rev. Phys. Chem. 59, 291-317 (2008). [CrossRef]
  9. R. J. D. Miller, A. Paarmann, and V. I. Prokhorenko, “Diffractive optics based four-wave, six-wave, V-wave nonlinear spectroscopy,” Acc. Chem. Res. 42, 1442-1451 (2009). [CrossRef] [PubMed]
  10. D. B. Strasfeld, S. H. Shim, and M. T. Zanni, “New advances in mid-IR pulse shaping and its application to 2D IR spectroscopy and ground-state coherent control,” Adv. Chem. Phys. 141, 1-28 (2009). [CrossRef]
  11. J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: an ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At., Mol., Opt. Phys. 57, 249-321 (2009). [CrossRef]
  12. E. R. Andresen and P. Hamm, “Site-specific difference 2D-IR spectroscopy of bacteriorhodopsin,” J. Phys. Chem. B 113, 6520-6527 (2009). [CrossRef] [PubMed]
  13. V. Cervetto, P. Hamm, and J. Helbing, “Transient 2D-IR spectroscopy of thiopeptide isomerization,” J. Phys. Chem. B 112, 8398-8405 (2008). [CrossRef] [PubMed]
  14. J. Bredenbeck, J. Helbing, K. Nienhaus, G. U. Nienhaus, and P. Hamm, “Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104, 14243-14248 (2007). [CrossRef] [PubMed]
  15. C. R. Baiz, R. McCanne, M. J. Nee, and K. J. Kubarych, “Orientational dynamics of transient molecules measured by nonequilibrium two-dimensional infrared spectroscopy,” J. Phys. Chem. A 113, 8907-8916 (2009). [CrossRef] [PubMed]
  16. C. R. Baiz, R. McCanne, and K. J. Kubarych, “Structurally-selective geminate rebinding dynamics of solvent-caged radicals studied with non-equilibrium infrared echo spectroscopy,” J. Am. Chem. Soc. 131, 13590-13591 (2009). [CrossRef] [PubMed]
  17. K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, “Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer,” Opt. Lett. 30, 1228-1230 (2005). [CrossRef] [PubMed]
  18. K. F. Lee, K. J. Kubarych, A. Bonvalet, and M. Joffre, “Characterization of mid-infrared femtosecond pulses [invited],” J. Opt. Soc. Am. B 25, A54-A62 (2008). [CrossRef]
  19. M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, “Two-dimensional infrared spectroscopy detected by chirped-pulse upconversion,” Opt. Lett. 32, 713-715 (2007). [CrossRef] [PubMed]
  20. K. F. Lee, P. Nuernberger, A. Bonvalet, and M. Joffre, “Removing cross-phase modulation from midinfrared chirped-pulse upconversion spectra,” Opt. Express 17, 18738-18744 (2009). [CrossRef]
  21. E. J. Heilweil, “Ultrashort-pulse multichannel infrared-spectroscopy using broad-band frequency-conversion in LiIO3,” Opt. Lett. 14, 551-553 (1989). [CrossRef] [PubMed]
  22. T. P. Dougherty and E. J. Heilweil, “Dual-beam subpicosecond broad-band infrared spectrometer,” Opt. Lett. 19, 129-131 (1994). [CrossRef] [PubMed]
  23. T. P. Dougherty and E. J. Heilweil, “Transient infrared-spectroscopy of (η5−C5H5)Co(CO)2 photoproduct reactions in hydrocarbon solutions,” J. Chem. Phys. 100, 4006-4009 (1994). [CrossRef]
  24. J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, “A new method for picosecond time-resolved infrared-spectroscopy--applications to CO photodissociation from iron porphyrins,” Chem. Phys. Lett. 138, 110-114 (1987). [CrossRef]
  25. J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, “Iron carbonyl bond geometries of carboxymyoglobin and carboxyhemoglobin in solution determined by picosecond time-resolved infrared-spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 85, 5062-5066 (1988). [CrossRef] [PubMed]
  26. C. R. Baiz, M. J. Nee, R. McCanne, and K. J. Kubarych, “Ultrafast nonequilibrium Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2533-2535 (2008). [CrossRef] [PubMed]
  27. M. E. DeCamp and A. Tokmakoff, “Upconversion multichannel infrared spectrometer,” Opt. Lett. 30, 1818-1820 (2005). [CrossRef] [PubMed]
  28. M. F. DeCamp, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Single-shot two-dimensional infrared spectroscopy,” Opt. Express 15, 233-241 (2007). [CrossRef] [PubMed]
  29. M. M. Abbas, T. Kostiuk, and K. W. Ogilvie, “Infrared upconversion for astronomical applications,” Appl. Opt. 15, 961-970 (1976). [CrossRef] [PubMed]
  30. L. J. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector,” Opt. Express 17, 14395-14404 (2009). [CrossRef] [PubMed]
  31. S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197-14202 (2007). [CrossRef] [PubMed]
  32. L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, “Two dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32, 2966-2968 (2007). [CrossRef] [PubMed]
  33. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420-17428 (2008). [CrossRef] [PubMed]
  34. P. E. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett. 34, 1390-1392 (2009). [CrossRef] [PubMed]
  35. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25, 1210-1212 (2000). [CrossRef]
  36. P. B. Petersen and A. Tokmakoff, “A source for ultrafast continuum infrared and terahertz radiation,” submitted to Opt. Lett. (2010).
  37. M. R. Armstrong, E. J. Reed, K. Y. Kim, J. H. Glownia, W. M. Howard, E. L. Piner, and J. C. Roberts, “Observation of terahertz radiation coherently generated by acoustic waves,” Nat. Phys. 5, 285-288 (2009). [CrossRef]
  38. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605-609 (2008). [CrossRef]
  39. A. V. Smith, “Snlo: free software for modeling nonlinear frequency conversion processes in nonlinear crystals,” http://www.as-photonics.com/snlo.html.
  40. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, “Increased-bandwidth in ultrashort-pulse measurement using an angle-dithered nonlinear-optical crystal,” Opt. Express 7, 342-349 (2000). [CrossRef] [PubMed]
  41. P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10 fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686-1688 (2004). [CrossRef] [PubMed]
  42. M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258-5279 (2003). [CrossRef]
  43. L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467-2474 (1995). [CrossRef]
  44. L. Lepetit and M. Joffre, “Two-dimensional nonlinear optics using Fourier-transform spectral interferometry,” Opt. Lett. 21, 564-566 (1996). [CrossRef] [PubMed]
  45. C. Dorrer, N. Belabas, J. P. Likforman, and L. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers,” Appl. Phys. B: Lasers Opt. 70, S99-S107 (2000). [CrossRef]
  46. J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307-313 (1998). [CrossRef]
  47. S. M. Gallagher, A. W. Albrecht, T. D. Hybl, B. L. Landin, B. Rajaram, and D. M. Jonas, “Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals,” J. Opt. Soc. Am. B 15, 2338-2345 (1998). [CrossRef]
  48. K. Nagayama, P. Bachmann, K. Wuetrich, and R. R. Ernst, “Use of cross-sections and of projections in 2-dimensional Nmr-spectroscopy,” J. Magn. Reson. 31, 133-148 (1978). [CrossRef]
  49. R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford U. Press, 1987).
  50. M. Khalil, N. Demirdoven, and A. Tokmakoff, “Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra,” Phys. Rev. Lett. 90, 047401 (2003). [CrossRef] [PubMed]
  51. E. H. G. Backus, S. Garrett-Roe, and P. Hamm, “Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2665-2667 (2008). [CrossRef] [PubMed]
  52. J. D. Hybl, A. A. Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606-6622 (2001). [CrossRef]
  53. S. Park, K. Kwak, and M. D. Fayer, “Ultrafast 2D-IR vibrational echo spectroscopy: a probe of molecular dynamics,” Laser Phys. Lett. 4, 704-718 (2007). [CrossRef]
  54. O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coupling and orientation between anharmonic vibrations characterized with two-dimensional infrared vibrational echo spectroscopy,” J. Chem. Phys. 115, 10814-10828 (2001). [CrossRef]
  55. N. Demirdöven, M. Khalil, O. Golonzka, and A. Tokmakoff, “Correlation effects in the two-dimensional vibrational spectroscopy of coupled vibrations,” J. Phys. Chem. A 105, 8025-8030 (2001). [CrossRef]
  56. M. Khalil and A. Tokmakoff, “Signatures of vibrational interactions in coherent two-dimensional infrared spectroscopy,” Chem. Phys. 266, 213-230 (2001). [CrossRef]
  57. O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, “Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy,” Phys. Rev. Lett. 86, 2154-2157 (2001). [CrossRef] [PubMed]
  58. S. M. Gallagher Faeder and D. M. Jonas, “Two-dimensional electronic correlation and relaxation spectra: theory and model calculations,” J. Phys. Chem. A 103, 10489-10505 (1999). [CrossRef]
  59. S. T. Roberts, J. J. Loparo, and A. Tokmakoff, “Characterization of spectral diffusion from two-dimensional line shapes,” J. Chem. Phys. 125, 084502 (2006). [CrossRef] [PubMed]
  60. A. Tokmakoff, “Two-dimensional line shapes derived from coherent third-order nonlinear spectroscopy,” J. Phys. Chem. A 104, 4247-4255 (2000). [CrossRef]
  61. K. Okumura, A. Tokmakoff, and Y. Tanimura, “Two-dimensional line-shape analysis of photon-echo signal,” Chem. Phys. Lett. 314, 488-495 (1999). [CrossRef]
  62. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  63. C. R. Baiz, P. L. McRobbie, J. M. Anna, E. Geva, and K. J. Kubarych, “Two-dimensional infrared spectroscopy of metal carbonyls,” Acc. Chem. Res. 42, 1395-1404 (2009). [CrossRef] [PubMed]
  64. M. J. Nee, C. R. Baiz, J. M. Anna, R. McCanne, and K. J. Kubarych, “Multilevel vibrational coherence transfer and wavepacket dynamics probed with multidimensional IR spectroscopy,” J. Chem. Phys. 129, 084503 (2008). [CrossRef] [PubMed]
  65. J. M. Anna, M. R. Ross, and K. J. Kubarych, “Dissecting enthalpic and entropic barriers to ultrafast equilibrium isomerization of a flexible molecule using 2DIR chemical exchange spectroscopy,” J. Phys. Chem. A 113, 6544-6547 (2009). [CrossRef] [PubMed]
  66. F. Ding, P. Mukherjee, and M. T. Zanni, “Passively correcting phase drift in two-dimensional infrared spectroscopy,” Opt. Lett. 31, 2918-2920 (2006). [CrossRef] [PubMed]
  67. K. Kwak, D. E. Rosenfeld, and M. D. Fayer, “Taking apart the two-dimensional infrared vibrational echo spectra: more information and elimination of distortions,” J. Chem. Phys. 128, 204505 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited