OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 394–401

Potentialities of glass air-clad micro- and nanofibers for nonlinear optics

Aurélien Coillet, Guillaume Vienne, and Philippe Grelu  »View Author Affiliations

JOSA B, Vol. 27, Issue 3, pp. 394-401 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (582 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Micro- and nanofibers constitute an attractive platform for testing nonlinear devices with millimeter size in a simple and flexible fashion, with potential applications in ultra-fast all-optical communications. In this article, we present challenges that must be addressed and targets that can be reached using such a platform. We describe a tunable laser source capable of delivering pulses with a kilowatt peak power and a sub-0.1-nm linewidth that is specially designed for the study of resonant devices such as the nonlinear loop resonator. Experimental and simulation results are presented for silica microfiber based nonlinear devices. The prospect of developing hybrid devices combining highly nonlinear glasses and silica fibers is supported by numerical simulations of the coupling between two nanofibers of largely different optical indices.

© 2010 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(140.4780) Lasers and laser optics : Optical resonators
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(140.3538) Lasers and laser optics : Lasers, pulsed
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 22, 2009
Revised Manuscript: December 9, 2009
Manuscript Accepted: December 21, 2009
Published: February 3, 2010

Aurélien Coillet, Guillaume Vienne, and Philippe Grelu, "Potentialities of glass air-clad micro- and nanofibers for nonlinear optics," J. Opt. Soc. Am. B 27, 394-401 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004). [CrossRef]
  2. J. K. Lucek and K. Smith, “All-optical signal regenerator,” Opt. Lett. 18, 1226-1228 (1993). [CrossRef] [PubMed]
  3. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009). [CrossRef]
  4. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  5. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “All-optical regeneration on a silicon chip,” Opt. Express 15, 7802-7809 (2007). [CrossRef] [PubMed]
  6. P. S. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006). [CrossRef]
  7. J. Travers, A. Rulkov, B. Cumberland, S. Popov, and J. Taylor, “Non-linear applications of microstructured optical fibres,” Opt. Quantum Electron. 39, 963-974 (2007). [CrossRef]
  8. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16, 1300-1320 (2008). [CrossRef] [PubMed]
  9. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107-161 (2009). [CrossRef]
  10. L. Xiao, M. D. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34, 2724-2726 (2009). [CrossRef] [PubMed]
  11. L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354, 1240-1244 (2008) (Proceedings of the 2005 International Conference on Glass, in conjunction with the Annual Meeting of the International Commission on Glass). [CrossRef]
  12. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880-2887 (2004). [CrossRef] [PubMed]
  13. S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures. Part I: Kerr nonlinearity,” Opt. Express 17, 2298-2318 (2009). [CrossRef]
  14. R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14, 9408-9414 (2006). [CrossRef] [PubMed]
  15. D.-I. Yeom, E. C. Mgi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660-662 (2008). [CrossRef] [PubMed]
  16. V. Grubsky and J. Feinberg, “Phase-matched third-harmonic uv generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274, 447-450 (2007). [CrossRef]
  17. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56-58 (1988). [CrossRef] [PubMed]
  18. I. White, R. Penty, and R. Epworth, “Demonstration of the optical Kerr effect in an all-fibre Mach-Zehnder interferometer at laser diode powers,” Electron. Lett. 24, 340-341 (1988). [CrossRef]
  19. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  20. G. Vienne, P. Grelu, X. Pan, Y. Li, and L. Tong, “Theoretical study of microfiber resonator devices exploiting a phase shift,” J. Opt. A, Pure Appl. Opt. 10, 025303 (2008). [CrossRef]
  21. G. Vienne, Y. Li, L. Tong, and P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500-1502 (2008). [CrossRef] [PubMed]
  22. X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282, 3817-3819 (2009). [CrossRef]
  23. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate q of optical microsphere resonators,” Opt. Lett. 21, 453-455 (1996). [CrossRef] [PubMed]
  24. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925-928 (2003). [CrossRef] [PubMed]
  25. N. G. R. Broderick and T. T. Ng, “Theoretical study of noise reduction of NRZ signals using nonlinear broken microcoil resonators,” IEEE Photon. Technol. Lett. 21, 444-446 (2009). [CrossRef]
  26. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242-250 (2006). [CrossRef]
  27. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003). [CrossRef] [PubMed]
  28. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82-87 (2006). [CrossRef] [PubMed]
  29. G. Vienne, A. Coillet, P. Grelu, M. E. Amraoui, J.-C. Jules, F. Smektala, and L. Tong, “Demonstration of a reef knot microfiber resonator,” Opt. Express 17, 6224-6229 (2009). [CrossRef] [PubMed]
  30. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  31. K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46, 1429-1434 (2007). [CrossRef] [PubMed]
  32. G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and z-scan techniques,” Opt. Commun. 199, 425-433 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited