OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 408–416

Engineering the second harmonic generation pattern from coupled gold nanowires

A. Benedetti, M. Centini, C. Sibilia, and M. Bertolotti  »View Author Affiliations


JOSA B, Vol. 27, Issue 3, pp. 408-416 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000408


View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically investigated second harmonic generation from systems composed of two coupled gold nanowires. The developed method allows one to arbitrarily change the shape of the wire cross section in order to explore the generated and scattered field patterns. Our results suggest that the overall second harmonic generation is related to the electromagnetic energy per unit length stored in the gap area between the wires. These geometrical considerations make further optimization possible. As an example we discuss the possibility to select dipolar emission and/or quadrupolar emission patterns. The selection mechanism responsible for this kind of emission can be traced back to the interaction between nonlinear sources with the surface plasmon resonance of the metallic wires.

© 2010 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(290.5850) Scattering : Scattering, particles

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 2, 2009
Manuscript Accepted: December 16, 2009
Published: February 4, 2010

Citation
A. Benedetti, M. Centini, C. Sibilia, and M. Bertolotti, "Engineering the second harmonic generation pattern from coupled gold nanowires," J. Opt. Soc. Am. B 27, 408-416 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-3-408


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Adler, “Nonlinear optical frequency polarization in a dielectric,” Phys. Rev. 134, A728-A733 (1964). [CrossRef]
  2. S. Jha, “Theory of optical harmonic generation at a metal surface,” Phys. Rev. 140, A2020-A2030 (1965). [CrossRef]
  3. F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14, 1029-1031 (1965). [CrossRef]
  4. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813-822 (1968). [CrossRef]
  5. N. Bloembergen, R. K. Chang, and C. H. Lee, “Second-harmonic generation of light in reflection from media with inversion symmetry,” Phys. Rev. Lett. 16, 986-989 (1966). [CrossRef]
  6. C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Coherent second-harmonic generation by counterpropagating surface plasmons,” Opt. Lett. 4, 393-394 (1979). [CrossRef] [PubMed]
  7. G. I. Stegeman, J. J. Burke, and D. G. Hall, “Nonlinear optics of long range surface plasmons,” Appl. Phys. Lett. 41, 906-908 (1982). [CrossRef]
  8. J. E. Sipe and G. I. Stegeman, in Nonlinear Optical Response of Metal Surfaces, Surface Polaritons, V.M.Agranovich and D.L.Mills, eds. (North-Holland, 1982), pp. 661-701.
  9. M. Corvi and L. W. Schaich, “Hydrodynamic-model calculation of second-harmonic generation at a metal surface,” Phys. Rev. B 33, 3688-3695 (1986). [CrossRef]
  10. A. Liebsch, Electronic Excitations at Metal Surfaces (Plenum, 1997), Chap 5.
  11. T. F. Heinz, in Second-Order Nonlinear Optical Effects at Surfaces and Interfaces, Review Chapter in Nonlinear Surface Electromagnetic Phenomena, H.Ponath and G.Stegeman, eds. (Elsevier, 1991), p. 353.
  12. J. C. Quail and H. J. Simon, “Second harmonic generation from silver and aluminium films in total internal reflection,” Phys. Rev. B. 31, 4900-4905 (1985). [CrossRef]
  13. H. J. Simon, C. Huang, J. C. Quail, and Z. Chen, “Second-harmonic generation with surface plasmons from a silvered quartz grating,” Phys. Rev. B 38, 7408-7414 (1988). [CrossRef]
  14. G. A. Farias and A. A. Maradudin, “Second harmonic generation in reflection from a metallic grating,” Phys. Rev. B 30, 3002-3015 (1984). [CrossRef]
  15. R. Reinisch and M. Nevière, “Electromagnetic theory of diffraction in nonlinear optics and surface-enhanced nonlinear optical effects,” Phys. Rev. B 28, 1870-1885 (1983). [CrossRef]
  16. K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B 72, 153401 (2005). [CrossRef]
  17. S. Ducourtieux, S. Grésillon, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. P. Drachev, W. D. Bragg, V. P. Safonov, V. A. Podolskiy, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Percolation and fractal composites: optical studies,” J. Nonlinear Opt. Phys. Mater. 9, 105-116 (2000).
  18. V.M.Shalaev, ed., Optical Properties of Nanostructured Random Media (Springer, 2002). [CrossRef]
  19. B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12, 5418-5423 (2004). [CrossRef] [PubMed]
  20. J. I. Dadap, H. B. de Aguiar, and S. Roke, “Nonlinear light scattering from clusters and single particles,” J. Chem. Phys. 130, 214710 (2009). [CrossRef] [PubMed]
  21. H. E. Katz, G. Scheller, T. M. Putvinski, M. L. Schilling, W. L. Wilson, and C. E. D. Chidsey, “Polar orientation of dyes in robust multilayers by zirconium phosphate-phosphonate interlayers,” Science 254, 1485-1487 (1991). [CrossRef] [PubMed]
  22. A. Datta and S. K. Pati, “Dipole orientation effects on nonlinear optical properties of organic molecular aggregates,” J. Chem. Phys. 118, 8420-8427 (2003). [CrossRef]
  23. S. Di Bella, M. A. Ratner, and T. J. Marks, “Design of chromophoric molecular assemblies with large second-order optical nonlinearities: a theoretical analysis of the role of intermolecular interactions,” J. Am. Chem. Soc. 114, 5842-5849 (1992). [CrossRef]
  24. A. Datta and S. K. Pati, “Charge-transfer induced large nonlinear optical properties of small Al clusters: Al4M4 (M=Li, Na, and K),” J. Phys. Chem. A 108, 9527-9530 (2004). [CrossRef]
  25. J. Zyss, J. F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160-4163 (1984). [CrossRef]
  26. A. Datta and S. K. Pati, “Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability,” Chem. Soc. Rev. 35, 1305-1323 (2006). [CrossRef]
  27. S. Ramasesha and I. D. L. Albert “Model exact study of dc-electric-field-induced second harmonic generation coefficients in polyene systems,” Phys. Rev. B 42, 8587-8594 (1990). [CrossRef]
  28. F. W. Vance, B. I. Lemon, and J. T. Hupp, “Enormous hyper-Rayleigh scattering from nanocrystalline gold particle suspensions,” J. Phys. Chem. B 102, 10091-10093 (1998). [CrossRef]
  29. M. Chandra and P. K. Das, “Small-particle limit in the second harmonic generation from noble metal nanoparticles,” Chem. Phys. 358, 203-208 (2009). [CrossRef]
  30. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003). [CrossRef] [PubMed]
  31. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251-1255 (2007). [CrossRef] [PubMed]
  32. M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008). [CrossRef]
  33. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt. 11, 114030 (2009). [CrossRef]
  34. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009). [CrossRef]
  35. T. Kitahara, A. Sugawara, H. Sano, and G. Mizutani, “Optical second-harmonic spectroscopy of Au nanowires,” J. Appl. Phys. 95, 5002-5005 (2004). [CrossRef]
  36. A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier de Mongeot, “Tailored second harmonic generation from self-organized metal nano-wires arrays,” Opt. Express 17, 3603-3609 (2009). [CrossRef] [PubMed]
  37. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502-504 (2006). [CrossRef] [PubMed]
  38. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials: erratum,” Opt. Express 16, 8055 (2008). [CrossRef]
  39. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006). [CrossRef] [PubMed]
  40. W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, Jr., K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027-1030 (2006). [CrossRef]
  41. C. I. Valencia, E. R. Mendez, and B. S. Mendoza, “Second-harmonic generation in the scattering of light by an infinite cylinder,” J. Opt. Soc. Am. B 21, 36-44 (2004). [CrossRef]
  42. C. I. Valencia, E. R. Mendez, and B. S. Mendoza, “Second-harmonic generation in the scattering of light by two-dimensional particles,” J. Opt. Soc. Am. B 20, 2150-2161 (2003). [CrossRef]
  43. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045-4048 (1999). [CrossRef]
  44. J. I. Dadap, “Optical second-harmonic scattering from cylindrical particles,” Phys. Rev. B 78, 205322 (2008). [CrossRef]
  45. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955-960 (2008). [CrossRef]
  46. L. Cao and N. C. Panoiu, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009). [CrossRef]
  47. W. L. Schaich, “Second harmonic genaration by periodically-structured metal surfaces,” Phys. Rev. B 78, 195416 (2008). [CrossRef]
  48. M. A. Vincenti, V. Petruzzelli, A. D'Orazio, F. Prudenzano, M. J. Bloemer, N. Akozbek, and M. Scalora, “Second harmonic generation from nanoslits in metal substrates: applications to palladium-based H sensor,” J. Nanophotonics 2, 021851 (2008). [CrossRef]
  49. Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009). [CrossRef]
  50. N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33, 1975-1977 (2008). [CrossRef] [PubMed]
  51. Y. Zeng and J. V. Moloney, “Volume electric dipole origin of second-harmonic generation from metallic membrane with noncentrosymmetric patterns,” Opt. Lett. 34, 2844-2846 (2009). [CrossRef] [PubMed]
  52. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92, 057402 (2004). [CrossRef] [PubMed]
  53. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271-5283 (1998). [CrossRef]
  54. M.-L. Thèye, “Investigation of the optical properties of Au by means of thin semitransparent films,” Phys. Rev. B 2, 3060-3078 (1970). [CrossRef]
  55. M. Centini, A. Benedetti, M. Scalora, C. Sibilia, and M. Bertolotti, “Second harmonic generation from metallic 2D scatterers,” Proc. SPIE 7354, 73540F (2009). [CrossRef]
  56. D. Maystre and M. Neviere, “Nonlinear polarization inside metals: a mathematical study of the free electron model,” Appl. Phys. A A39, 115-121 (1986). [CrossRef]
  57. A. D. Yaghjian, “Electric dyadic Green's functions in the source region,” Proc. IEEE 68, 248-263 (1980). [CrossRef]
  58. M. Paulus and O. J. F. Martin, “Light propagation and scattering in stratified media: a Green's tensor approach,” J. Opt. Soc. Am. A 18, 854-861 (2001). [CrossRef]
  59. M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the Green's tensor for stratified media,” Phys. Rev. E 62, 5797-5807 (2000). [CrossRef]
  60. P. G. Etchegoin and E. C. Le Ru, “Multipolar emission in the vicinity of metallic nanostructures,” J. Phys. Condens. Matter 18, 1175-1188 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited