OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 442–446

Slow-light enhancement of stimulated emission of atomic systems in photonic crystals

Yang Liu, Chun Jiang, Yaming Lin, and Wenhui Xu  »View Author Affiliations


JOSA B, Vol. 27, Issue 3, pp. 442-446 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000442


View Full Text Article

Enhanced HTML    Acrobat PDF (371 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate both theoretically and numerically that slow light can enhance the stimulated emission of four-level atomic systems in photonic crystals. By applying the Bloch–Floquet formalism and the semiclassical physical model of harmonic oscillators coupled to electromagnetic fields, we develop a formalism that relates the group velocity of slow light to the conversion rate between the electric field and atomic potential energy. From our numerical study of the stimulated emission in fiber Bragg gratings (FBGs) and nongrating fiber, a ninefold enhancement of stimulated emission is observed in a FBG over the nongrating fiber when pumping at the band edge, while a 20-fold enhancement of is observed when the frequency of the stimulated emission approaches the band edge.

© 2010 Optical Society of America

OCIS Codes
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(020.1335) Atomic and molecular physics : Atom optics
(230.5298) Optical devices : Photonic crystals

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: September 29, 2009
Manuscript Accepted: December 7, 2009
Published: February 11, 2010

Citation
Yang Liu, Chun Jiang, Yaming Lin, and Wenhui Xu, "Slow-light enhancement of stimulated emission of atomic systems in photonic crystals," J. Opt. Soc. Am. B 27, 442-446 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-3-442


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Win, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).
  4. H. Gersen, T. Karle, R. Engelen, W. Bogaerts, J. Korterik, N. Van Hulst, T. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005). [CrossRef] [PubMed]
  5. E. Hecht, Optics (Addison-Wesley, 1998).
  6. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt Saunders, 1976).
  7. P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B 73, 165125 (2006). [CrossRef]
  8. R. K. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab,” J. Opt. Soc. Am. B 17, 629-633 (2000). [CrossRef]
  9. A. E. Siegman, Lasers (University Science Books, 1986).
  10. K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, “Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler,” Electron. Lett. 30, 856-857 (1994). [CrossRef]
  11. A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863-864 (1997). [CrossRef]
  12. C. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271-283 (1991). [CrossRef]
  13. M. Botey, M. Maymo, D. Biallo, and J. Martorell, “Photon lifetime at the inner band edges of a 3-D photonic crystal,” Laser Phys. 14, 643-647 (2004).
  14. S. Ha and A. A. Sukhorukov, “Nonlinear switching and reshaping of slow-light puse in Bragg-grating couplers,” J. Opt. Soc. Am. B 25, C15-C22 (2008). [CrossRef]
  15. V. Govindan and S. Blair, “Nonlinear pulse interaction in microresonator slow-light waveguides,” J. Opt. Soc. Am. B 25, C23-C30 (2008). [CrossRef]
  16. K. Sakoda, “Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals,” Opt. Express 4, 167-176 (1999). [CrossRef] [PubMed]
  17. M. Soljačić, S. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052-2059 (2002). [CrossRef]
  18. J. McMillan, X. Yang, N. Panoiu, R. Osgood, and C. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31, 1235-1237 (2006). [CrossRef] [PubMed]
  19. D. Bialio, A. D'Orazio, M. De Sario, L. Petruzzelli, and F. Prudenzano, “Optical amplification in Er3+ doped SiO2-TiO2 photonic crystals,” in Transparent Optical Networks, 2005, Proceedings of 2005 7th International Conference (IEEE, 2005), Vol. 1, pp. 149-154. [CrossRef]
  20. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman-Hall, 1983).
  21. A. S. Nagra and R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334-340 (1998). [CrossRef]
  22. X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70-73 (2000). [CrossRef] [PubMed]
  23. M. Born and E. Wolf, Principles of Optics7th ed. (Cambridge Univ. Press,1999).
  24. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited