OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 452–457

Energy transfer processes in Tm 3 + -doped aluminate glass

Lu Yan, Zhisong Xiao, Fang Zhu, Feng Zhang, and Anping Huang  »View Author Affiliations

JOSA B, Vol. 27, Issue 3, pp. 452-457 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (346 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have quantitatively studied the energy-transfer processes between trivalent thulium ions in aluminate glass with different Tm 3 + concentrations. Our emphasis has been placed on the determination of the microscopic and macroscopic parameters—the critical radius of these energy transfer processes, i.e., cross relaxation ( H 4 3 + H 6 3 F 4 3 + F 4 3 ) and donor–donor energy migration ( H 4 3 + H 6 3 H 4 3 + H 6 3 ) . For the 1.8 μ m emission in aluminate glass, only a slightly slower increase rather than quenching, even at a high concentration (higher than 15 wt % ), was observed. Quantitative evidences and explanations indicated that high-order multipolar coupling mechanisms played an important role in energy transfer processes, and it would be helpful to predict efficient host materials and impurity concentrations according to these results to prevent the depopulation of the F 4 3 energy level.

© 2010 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.5690) Materials : Rare-earth-doped materials
(260.2160) Physical optics : Energy transfer
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:

Original Manuscript: September 21, 2009
Manuscript Accepted: December 15, 2009
Published: February 16, 2010

Lu Yan, Zhisong Xiao, Fang Zhu, Feng Zhang, and Anping Huang, "Energy transfer processes in Tm3+-doped aluminate glass," J. Opt. Soc. Am. B 27, 452-457 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. S. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87, 111103 (2005). [CrossRef]
  2. D. Q. Chen, Y. S. Wang, F. Bao, and Y. L. Yu, “Broadband near-infrared emission from Tm3+/Er3+ codoped nanostructured glass ceramics,” J. Appl. Phys. 101, 113511 (2007). [CrossRef]
  3. A. Polman and F. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21, 871-892 (2004). [CrossRef]
  4. J. F. Wu, Z. Yao, J. Zong, and S. B. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32, 638-640 (2007). [CrossRef] [PubMed]
  5. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750-761 (1962). [CrossRef]
  6. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511-520 (1962). [CrossRef]
  7. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836-850 (1953). [CrossRef]
  8. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961-2969 (1970). [CrossRef]
  9. D. F. de Sousa, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Evidence of higher-order mechanisms than dipole-dipole interaction in Tm3+-Tm3+ energy transfer in fluoroindogallate glasses,” Phys. Rev. B 65, 094204 (6pp) (2002). [CrossRef]
  10. T. Kushida, “Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation,” J. Phys. Soc. Jpn. 34, 1318-1326 (1973). [CrossRef]
  11. K. Rajnak, “Approximate excited eigenfunctions for Pr3+ and Tm3+,” J. Chem. Phys. 37, 2440-2444 (1962). [CrossRef]
  12. A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882-885 (1972).
  13. L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56, 14344 (1997). [CrossRef]
  14. A. S. S. De Camargo, S. L. De Oliveira, D. F. De Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm 3 ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14, 9495-9505 (2002). [CrossRef]
  15. D. F. de Sousa and L. A. O. Nunes, “Microscopic and macroscopic parameters of energy transfer between Tm3+ ions in fluoroindogallate glasses,” Phys. Rev. B 66, 024207 (2002). [CrossRef]
  16. Z. S. Xiao, R. Serna, F. Xu, and C. N. Afonso, “Critical separation for efficient Tm3+-Tm3+ energy transfer evidenced in nanostructured Tm3+:Al2O3 thin films,” Opt. Lett. 33, 608-610 (2008). [CrossRef] [PubMed]
  17. H. Kalaycioglu, A. Sennaroglu, A. Kurt, and G. Ozen, “Spectroscopic analysis of Tm3+:LuAG,” J. Phys. Condens. Matter 19, 036208 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited