OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 464–475

Cavity-QED based scheme for realization of photon annihilation and creation operations and their combinations

Ho-Joon Kim, Jiyong Park, and Hai-Woong Lee  »View Author Affiliations

JOSA B, Vol. 27, Issue 3, pp. 464-475 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (196 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Theoretical analysis is given of an experimental scheme that can perform individual photon operations such as the photon annihilation operation a, creation operation a , and commutation operation a a a a , utilizing atom–cavity field interactions and conditional measurements. In order for the scheme to perform the desired photon operation, the atom–cavity field interaction times are generally required to be sufficiently short that photon annihilation and/or creation are dominated by the one-half Rabi cycle process. Such short interaction times, however, lead inevitably to a low success probability of the scheme. It is shown that this problem of low success probability can be overcome by preparing the cavity field in a superposition of a small number (two) of Fock states and choosing the interaction times appropriately.

© 2010 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(270.5290) Quantum optics : Photon statistics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: November 19, 2009
Revised Manuscript: December 21, 2009
Manuscript Accepted: December 26, 2009
Published: February 16, 2010

Ho-Joon Kim, Jiyong Park, and Hai-Woong Lee, "Cavity-QED based scheme for realization of photon annihilation and creation operations and their combinations," J. Opt. Soc. Am. B 27, 464-475 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Phys. Today 42, 24-30 (1989). [CrossRef]
  2. D. Meschede, “Radiating atoms in confined space: From spontaneous emission to micromasers,” Phys. Rep. 211, 201-250 (1992). [CrossRef]
  3. H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325-1382 (2006). [CrossRef]
  4. R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, “Trapped atoms in cavity QED: coupling quantized light and matter,” J. Phys. B 38, S551-S565 (2005). [CrossRef]
  5. E. Jaynes and F. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89-109 (1963). [CrossRef]
  6. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565-582 (2001). [CrossRef]
  7. L.-M. Duan, A. Kuzmich, and H. J. Kimble, “Cavity QED and quantum-information processing with “hot” trapped atoms,” Phys. Rev. A 67, 032305 (2003). [CrossRef]
  8. G. S. Agarwal and K. Tara, “Nonclassical properties of states generated by the excitations on a coherent state,” Phys. Rev. A 43, 492-497 (1991). [CrossRef] [PubMed]
  9. G. S. Agarwal and K. Tara, “Nonclassical character of states exhibiting no squeezing or sub-poissonian statistics,” Phys. Rev. A 46, 485-488 (1992). [CrossRef] [PubMed]
  10. A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660-662 (2004). [CrossRef] [PubMed]
  11. A. Zavatta, S. Viciani, and M. Bellini, “Single-photon excitation of a coherent state: Catching the elementary step of stimulated light emission,” Phys. Rev. A 72, 023820 (2005). [CrossRef]
  12. A. Zavatta, V. Parigi, and M. Bellini, “Experimental nonclassicality of single-photon-added thermal light states,” Phys. Rev. A 75, 052106 (2007). [CrossRef]
  13. V. Parigi, A. Zavatta, M. S. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890-1893 (2007). [CrossRef] [PubMed]
  14. M. S. Kim, H. Jeong, A. Zavatta, V. Parigi, and M. Bellini, “Scheme for proving the bosonic commutation relation using single-photon interference,” Phys. Rev. Lett. 101, 260401 (2008). [CrossRef]
  15. Q. Sun, M. Al-Amri, and M. S. Zubairy, “Probing the quantum commutation rules through cavity QED,” Phys. Rev. A 78, 043801 (2008). [CrossRef]
  16. S.-Y. Lee, J. Park, S.-W. Ji, C. H. R. Ooi, and H.-W. Lee, “Nonclassicality generated by photon annihilation-then-creation and creation-then-annihilation operations,” J. Opt. Soc. Am. B 26, 1532-1537 (2009). [CrossRef]
  17. E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1-5 (1997). [CrossRef]
  18. M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, “Cavity-loss-induced generation of entangled atoms,” Phys. Rev. A 59, 2468-2475 (1999). [CrossRef]
  19. J. Hong and H.-W. Lee, “Quasideterministic generation of entangled atoms in a cavity,” Phys. Rev. Lett. 89, 237901 (2002). [CrossRef] [PubMed]
  20. A. S. Sørensen and K. Mølmer, “Probabilistic generation of entanglement in optical cavities,” Phys. Rev. Lett. 90, 127903 (2003). [CrossRef] [PubMed]
  21. A. S. Sørensen and K. Mølmer, “Measurement induced entanglement and quantum computation with atoms in optical cavities,” Phys. Rev. Lett. 91, 097905 (2003). [CrossRef] [PubMed]
  22. L.-M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003). [CrossRef] [PubMed]
  23. J. Lee, J. Park, S. M. Lee, H.-W. Lee, and A. H. Khosa, “Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields,” Phys. Rev. A 77, 032327 (2008). [CrossRef]
  24. L. Davidovich, N. Zagury, M. Brune, J. M. Raimond, and S. Haroche, “Teleportation of an atomic state between two cavities using nonlocal microwave fields,” Phys. Rev. A 50, R895 (1994). [CrossRef] [PubMed]
  25. D. T. Pegg, L. S. Phillips, and S. M. Barnett, “Optical state truncation by projection synthesis,” Phys. Rev. Lett. 81, 1604-1606 (1998). [CrossRef]
  26. S. M. Barnett and D. T. Pegg, “Optical state truncation,” Phys. Rev. A 60, 4965-4973 (1999). [CrossRef]
  27. M. Dakna, J. Clausen, L. Knöll, and D.-G. Welsch, “Generation of arbitrary quantum states of traveling fields,” Phys. Rev. A 59, 1658-1661 (1999). [CrossRef]
  28. G. M. D'Ariano, L. Maccone, M. G. A. Paris, and M. F. Sacchi, “Optical Fock-state synthesizer,” Phys. Rev. A 61, 053817 (2000). [CrossRef]
  29. M. Koniorczyk, Z. Kurucz, A. Gábris, and J. Janszky, “General optical state truncation and its teleportation,” Phys. Rev. A 62, 013802 (2000). [CrossRef]
  30. A. P. Lund and T. C. Ralph, “Nondeterministic gates for photonic single-rail quantum logic,” Phys. Rev. A 66, 032307 (2002). [CrossRef]
  31. A. Miranowicz, “Optical-state truncation and teleportation of qudits by conditional eight-port interferometry,” J. Opt. B: Quantum Semiclassical Opt. 7, 142-150 (2005). [CrossRef]
  32. A. Miranowicz, S. K. Özdemir, J. Bajer, M. Koashi, and N. Imoto, “Selective truncations of an optical state using projection synthesis,” J. Opt. Soc. Am. B 24, 379-383 (2007). [CrossRef]
  33. K. J. Resch, J. S. Lundeen, and A. M. Steinberg, “Quantum state preparation and conditional coherence,” Phys. Rev. Lett. 88, 113601 (2002). [CrossRef] [PubMed]
  34. A. I. Lvovsky and J. Mlynek, “Quantum-optical catalysis: Generating nonclassical states of light by means of linear optics,” Phys. Rev. Lett. 88, 250401 (2002). [CrossRef] [PubMed]
  35. S. A. Babichev, J. Ries, and A. I. Lvovsky, “Quantum scissors: Teleportation of single-mode optical states by means of a nonlocal single photon,” Europhys. Lett. 64, 1 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited