OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 488–497

Effective parameters and quasi-static resonances for periodic arrays of dielectric spheres

Ruey-Lin Chern and Xing-Xiang Liu  »View Author Affiliations

JOSA B, Vol. 27, Issue 3, pp. 488-497 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (742 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the effective parameters and quasi-static resonances for periodic arrays of dielectric spheres. The effective medium model based on the homogenization of normal modes for spherical particles is used to determine the effective permittivity ϵ eff and permeability μ eff in the quasi-static regime. Major features of ϵ eff and μ eff are characterized by the Lorentz-type anomalous dispersion around the frequencies pertaining to the leading-order electric and magnetic resonances, respectively. In particular, the anomalous dispersion is depicted by a resonance function associated with the spherical cavity. The underlying mechanism of quasi-static resonance is illustrated with the localized and dipole-like field patterns at the resonant frequencies. A comparison with the effective parameters for periodic arrays of dielectric circular cylinders is also discussed.

© 2010 Optical Society of America

OCIS Codes
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: September 23, 2009
Revised Manuscript: December 20, 2009
Manuscript Accepted: January 19, 2010
Published: February 18, 2010

Ruey-Lin Chern and Xing-Xiang Liu, "Effective parameters and quasi-static resonances for periodic arrays of dielectric spheres," J. Opt. Soc. Am. B 27, 488-497 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001). [CrossRef] [PubMed]
  3. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004). [CrossRef] [PubMed]
  4. G. B. Smith, “Dielectric constants for mixed media,” J. Phys. D 10, L39-L42 (1977). [CrossRef]
  5. D. Stroud and F. P. Pan, “Self-consistent approach to electromagnetic wave propagation in composite media: Application to model granular metals,” Phys. Rev. B 17, 1602-1610 (1978). [CrossRef]
  6. W. Lamb, D. M. Wood, and N. W. Ashcroft, “Long-wavelength electromagnetic propagation in heterogeneous media,” Phys. Rev. B 21, 2248-2266 (1980). [CrossRef]
  7. G. A. Niklasson, C. G. Granqvist, and O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20, 26-30 (1981). [CrossRef] [PubMed]
  8. P. Chýlek and V. Srivastava, “Dielectric constant of a composite inhomogeneous medium,” Phys. Rev. B 27, 5098-5106 (1983). [CrossRef]
  9. R. Luo, “Effective medium theories for the optical properties of three-component composite materials,” Appl. Opt. 36, 8153-8158 (1997). [CrossRef]
  10. J. C. Maxwell-Garnett, “Colours in metal glasses and metal films,” Philos. Trans. R. Soc. London, Ser. A 203, 385-420 (1904). [CrossRef]
  11. S. O'Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14, 4035-4044 (2002). [CrossRef]
  12. D. Felbacq and G. Bouchitté, “Theory of mesoscopic magnetism in photonic crystals,” Phys. Rev. Lett. 94, 183902 (2005). [CrossRef] [PubMed]
  13. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  14. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge, 1999).
  15. D. Kajfez and P. Guillon, Dielectric Resonators, 2nd ed. (Noble, 1998).
  16. D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2005).
  17. R. L. Chern and D. Felbacq, “Artificial magnetism and anticrossing interaction in photonic crystals and split-ring structures,” Phys. Rev. B 79, 075118 (2009). [CrossRef]
  18. L. Lewin, “The electrical constants of a material loaded with spherical particles,” Proc. Inst. Electr. Eng. 94, 65-68 (1947).
  19. J. E. Sipe and J. V. Kranendonk, “Macroscopic electromagnetic theory of resonant dielectrics,” Phys. Rev. A 9, 1806-1822 (1974). [CrossRef]
  20. P. C. Waterman and N. E. Pedersen, “Electromagnetic scattering by periodic arrays of particles,” J. Appl. Phys. 59, 2609-2618 (1986). [CrossRef]
  21. G. D. Mahan, “Long-wavelength absorption of cermets,” Phys. Rev. B 38, 9500-9502 (1988). [CrossRef]
  22. A. Lagarkov, A. Sarychev, Y. Smychkovich, and A. Vinogradov, “Effective medium theory for microwave dielectric constant and magnetic permeability of conducting stick composites,” J. Electromagn. Waves Appl. 6, 1159-1176 (1992).
  23. V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359-5365 (1999). [CrossRef]
  24. A. K. Sarychev, R. C. McPhedran, and V. M. Shalaev, “Electrodynamics of metal-dielectric composites and electromagnetic crystals,” Phys. Rev. B 62, 8531-8539 (2000). [CrossRef]
  25. C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596-2603 (2003). [CrossRef]
  26. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005). [CrossRef]
  27. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73, 045105 (2006). [CrossRef]
  28. Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74, 085111 (2006). [CrossRef]
  29. X. Hu, C. T. Chan, J. Zi, M. Li, and K. M. Ho, “Diamagnetic response of metallic photonic crystals at infrared and visible frequencies,” Phys. Rev. Lett. 96, 223901 (2006). [CrossRef] [PubMed]
  30. V. Yannopapas, “Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies,” Appl. Phys. A 87, 259-264 (2007). [CrossRef]
  31. S. T. Chui and Z. Lin, “Long wavelength behavior of two dimensional photonic crystals,” Phys. Rev. E 78, 065601(R) (2008). [CrossRef]
  32. M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79, 073103 (2009). [CrossRef]
  33. K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009). [CrossRef] [PubMed]
  34. R. L. Chern and Y. T. Chen, “Effective parameters for photonic crystals with large dielectric contrast,” Phys. Rev. B 80, 075118 (2009). [CrossRef]
  35. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  36. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007). [CrossRef] [PubMed]
  37. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007). [CrossRef] [PubMed]
  38. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391-403 (2006). [CrossRef]
  39. Y. Wu, Y. Lai, and Z. Q. Zhang, “Effective medium theory for elastic metamaterials in two dimensions,” Phys. Rev. B 76, 205313 (2007). [CrossRef]
  40. X. Hu, K. M. Ho, C. T. Chan, and J. Zi, “Homogenization of acoustic metamaterials of Helmholtz resonators in fluid,” Phys. Rev. B 77, 172301 (2008). [CrossRef]
  41. A. Sommerfeld, Partial Differential Equations in Physics, 2nd ed. (Academic, 1949).
  42. J. A. Kong, Electromagnetic Wave Theory (EMW, 2005).
  43. W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B 77, 235445 (2008). [CrossRef]
  44. C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, T. Zentgraf, T. P. Meyrath, and H. Giessen, “Transition from thin-film to bulk properties of metamaterials,” Phys. Rev. B 77, 035126 (2008). [CrossRef]
  45. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd ed. (Pergamon, 1977).
  46. J. J. Hopfield, “Theoretical and experimental effects of spatial dispersion on the optical properties of crystals,” Phys. Rev. 132, 563-572 (1963). [CrossRef]
  47. D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, “Direct calculation of permeability and permittivity for a left-handed metamaterial,” Appl. Phys. Lett. 77, 2246 (2000). [CrossRef]
  48. N. A. Mortensen, S. Xiao, and D. Felbacq, “Mesoscopic magnetism in dielectric photonic crystal meta materials: topology and inhomogeneous broadening,” J. Eur. Opt. Soc. Rapid Publ. 1, 06019 (2006). [CrossRef]
  49. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  50. R. L. Chern and S. D. Chao, “Optimal higher-lying band gaps for photonic crystals with large dielectric contrast,” Opt. Express 16, 16600-16608 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited