OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 498–504

Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime

Yu Qian Ye, Yi Jin, and Sailing He  »View Author Affiliations


JOSA B, Vol. 27, Issue 3, pp. 498-504 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000498


View Full Text Article

Enhanced HTML    Acrobat PDF (882 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A nearly omnidirectional THz absorber for both transverse electric (TE) and transverse magnetic (TM) polarizations is proposed. Through the excitation of the magnetic polariton in a metal-dielectric layer, the incident light is perfectly absorbed in a thin thickness that is about 25 times smaller than the resonance wavelength. By simply stacking several such structural layers with different geometrical dimensions, the bandwidth of this strong absorption can be effectively enhanced due to the hybridization of magnetic polaritons in different layers.

© 2010 Optical Society of America

OCIS Codes
(160.1890) Materials : Detector materials
(260.5740) Physical optics : Resonance
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Materials

History
Original Manuscript: October 29, 2009
Manuscript Accepted: December 16, 2009
Published: February 19, 2010

Citation
Yu Qian Ye, Yi Jin, and Sailing He, "Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime," J. Opt. Soc. Am. B 27, 498-504 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-3-498


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. D. Mauskopf, J. J. Bock, H. Del Castillo, W. L. Holzapfel, and A. E. Lange, “Composite infrared bolometers with Si3N4 micromesh absorbers,” Appl. Opt. 36, 765-771 (1997). [CrossRef] [PubMed]
  2. A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6, 1686-1689 (1988). [CrossRef]
  3. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519-7526 (2004). [CrossRef]
  4. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007). [CrossRef]
  5. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431-436 (1976). [CrossRef]
  6. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Efficient light absorption in metal-semiconductor-metal nanostructures,” Appl. Phys. Lett. 85, 194-196 (2004). [CrossRef]
  7. W. C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177-13182 (2000). [CrossRef]
  8. E. Popov, L. Tsonev, and D. Maystre, “Lamellar metallic grating anomalies,” Appl. Opt. 33, 5214-5219 (1994). [CrossRef] [PubMed]
  9. Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95, 165003 (2005). [CrossRef] [PubMed]
  10. J. Reinert, J. Psilopoulos, J. Grubert, and A. F. Jacob, “On the potential of graded-chiral Dallenbach absorbers,” Microwave Opt. Technol. Lett. 30, 252-254 (2001). [CrossRef]
  11. E. F. Knott, J. F. Schaeffer, and M. T. Tuley, Radar Cross Section (Artech House, 1993).
  12. W. W. Salisbury, “Absorbent body for electromagnetic waves,” U.S. Patent No. 2,599,944 (1952).
  13. N. Engheta, “Thin absorbing screens using metamaterial surfaces,” in IEEE Ant. Propagat. Soc. Internat. Symp. 2, 392-395 (2002).
  14. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef] [PubMed]
  15. H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16, 7181-7188 (2008). [CrossRef] [PubMed]
  16. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79, 125104 (2009). [CrossRef]
  17. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008). [CrossRef]
  18. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009). [CrossRef]
  19. G. P. Williams, “Filling the THz gap--high power sources and applications,” Rep. Prog. Phys. 69, 301-326 (2006). [CrossRef]
  20. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97-105 (2007). [CrossRef]
  21. All the simulations in this paper are performed using software package CST Microwave Studio, CST GmbH, Germany.
  22. N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. (Weinheim, Ger.) 20, 3859-3865 (2008). [CrossRef]
  23. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155-11163 (2006). [CrossRef] [PubMed]
  24. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Weinheim, Ger.) 19, 3628-3632 (2007). [CrossRef]
  25. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B 73, 041101 (2006). [CrossRef]
  26. T. V. Teperik, F. J. Garcia De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299-301 (2008). [CrossRef]
  27. A. Boltasseva, and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1-17 (2008). [CrossRef]
  28. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538-542 (2004). [CrossRef] [PubMed]
  29. G. Subramania and S. Y. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85, 5037-5039 (2004). [CrossRef]
  30. A. S. P. Chang, Y. Kim, M. Chen, Z. Yang, J. A. Bur, S. Lin, and K. Ho, “Visible three-dimensional metallic photonic crystal with non-localized propagating modes beyond waveguide cutoff,” Opt. Express 15, 8428-8437 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited