OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 505–511

Multifunctional photonic crystal cross waveguide for terahertz waves

Ben Wu, Hui Zhang, Peng Guo, Qian Wang, and Shengjiang Chang  »View Author Affiliations

JOSA B, Vol. 27, Issue 3, pp. 505-511 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1000 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multifunctional cross waveguide is designed based on the photonic crystal structure and the liquid crystal material. The different states of the cross waveguide controlled by the electric field make its various functions possible, including a switch with a high extinction ratio, a splitter that divides the terahertz wave into the desired proportions, and a through or 90° turn waveguide. The plane wave expansion method is used to calculate the bandgap in the photonic crystals, and coupling mode theory is adopted to analyze and eliminate the reflection loss. The finite element method is used to get the proper distribution of the external electric field. The properties of the cross waveguide are simulated by the finite difference time domain method, and the results show that the cross waveguide is a multifunctional device with high performance characteristics.

© 2010 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(040.2235) Detectors : Far infrared or terahertz
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

Original Manuscript: July 17, 2009
Revised Manuscript: December 20, 2009
Manuscript Accepted: January 11, 2010
Published: February 19, 2010

Ben Wu, Hui Zhang, Peng Guo, Qian Wang, and Shengjiang Chang, "Multifunctional photonic crystal cross waveguide for terahertz waves," J. Opt. Soc. Am. B 27, 505-511 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon, 2005 (IEEE, 2005), pp. 766-772.
  2. W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33, 974-976 (2008). [CrossRef] [PubMed]
  3. K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549-2554 (2003). [CrossRef] [PubMed]
  4. C. H. Zhang, Y. Y. Wang, J. Chen, L. Kang, W. W. Xu, and P. H. Wu, “Continuous-wave terahertz imaging system based on far-infrared laser source,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 2006. IRMMW-THz 2006 (IEEE, 2006), p. 426. [CrossRef] [PubMed]
  5. A. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wirel. Compon. Lett. 18, 67-69 (2008). [CrossRef]
  6. T. Löffler, T. May, C. A. Weg, A. A. B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007). [CrossRef]
  7. R. X. Guo, K. Akiyama, H. Minamide, and H. Ito, “Frequency-agile terahertz wave spectrometer for high-resolution gas sensing,” Appl. Phys. Lett. 90, 121127 (2007). [CrossRef]
  8. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005). [CrossRef]
  9. C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. LaVeigne, and D. B. Tanner, “Silicon beam splitter for far-infrared and terahertz spectroscopy,” Appl. Opt. 46, 7884-7888 (2007). [CrossRef] [PubMed]
  10. C. J. Lin, Y. T. Li, C. F. Hsieh, R. P. Pan, and C. L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16, 2995-3001 (2008). [CrossRef] [PubMed]
  11. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]
  12. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597-600 (2006). [CrossRef] [PubMed]
  13. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555-3557 (2004). [CrossRef]
  14. C. Lin, C. Chen, G. J. Schneider, P. Yao, S. Shi, A. Sharkawy, and D. W. Prather, “Wavelength scale terahertz two-dimensional photonic crystal waveguides,” Opt. Express 12, 5723-5728 (2004). [CrossRef] [PubMed]
  15. Y. Zhang, Z. J. Li, and B. J. Li, “Multimode interference effect and self-imaging principle in two-dimensional photonic crystals waveguides for terahertz waves,” Opt. Express 14, 2679-2688 (2006). [CrossRef] [PubMed]
  16. L. Fekete, F. Kadlec, P. Kuzel, and H. Nemec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett. 32, 680-682 (2007). [CrossRef] [PubMed]
  17. E. Miroshnichenko, I. Pinkevych, and Y. S. Kivshar, “Tunable all-optical switching in periodic structures with liquid-crystal defects,” Opt. Express 14, 2839-2844 (2006). [CrossRef] [PubMed]
  18. S. F. Mingaleev, M. Schillinger, D. Hermann, and K. Busch, “Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration,” Opt. Lett. 29, 2858-2860 (2004). [CrossRef]
  19. J. S. Li, J. L. He, and Z. Hong, “Terahertz wave switch based on silicon photonic crystals,” Appl. Opt. 46, 5034-5037 (2007). [CrossRef] [PubMed]
  20. H. Zhang, P. Guo, P. Chen, S. J. Chang, and J. H. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26, 101-106 (2008). [CrossRef]
  21. Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623-4625 (2008). [CrossRef]
  22. D. Grischkowsky, S. Keiding, M. V. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  23. S. H. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162-165 (2001). [CrossRef]
  24. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  25. H. Y. Wu, Cho-Fan Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photon. Technol. Lett. 18, 1488-1490 (2006). [CrossRef]
  26. J. E. Anderson, P. E. Watson, and P. J. Bos, LC3D: Liquid Crystal Display 3-D Director Simulator Software and Technology Guide (Artech House, 2001).
  27. Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15-17 (2001). [CrossRef]
  28. H. J. Deuling, “Elasticity of nematic liquid crystals,” in Liquid Crystals, L. Liebert, ed. (Academic, 1978), pp. 77-107.
  29. T. R. Tsai, C. Y. Chen, C. L. Pan, R. P. Pan, and X. C. Zhang, “THz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB,” Appl. Opt. 42, 2372-2376 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited