OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 531–535

Femtosecond UV laser non-ablative surface structuring of ZnO crystal: impact on exciton photoluminescence

Luc Museur, Jean-Pierre Michel, Patrick Portes, Apostolis Englezis, Andreas Stassinopoulos, Demetrios Anglos, and Andrei V. Kanaev  »View Author Affiliations


JOSA B, Vol. 27, Issue 3, pp. 531-535 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000531


View Full Text Article

Enhanced HTML    Acrobat PDF (395 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The ultraviolet (UV) laser irradiation (248 nm) of monocrystalline wurtzite ZnO with 450 fs pulses results in surface modification. A formation of two orthogonal ripple structures with a period of 400–500 nm was observed oriented parallel and perpendicular to the laser beam polarization. The UV exciton emission obtained on the irradiated domains is found greatly enhanced locally up to 10 3 times. The photoluminescence band is redshifted by 2–3 nm and 40% narrower (full width at half-maximum), while at the same time the E 2 ( 439 cm 1 ) Raman band intensity increases up to 50 times. The process is found irreversible with the threshold fluence of 11   mJ / cm 2 , which is considerably lower than the ablation threshold 115   mJ / cm 2 . Fine surface nanostructuring on the scale of 10   nm may be responsible for the observed effect. © 2008 Optical Society of America

© 2010 Optical Society of America

OCIS Codes
(240.6700) Optics at surfaces : Surfaces
(260.3800) Physical optics : Luminescence
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 3, 2009
Revised Manuscript: November 16, 2009
Manuscript Accepted: November 16, 2009
Published: February 22, 2010

Citation
Luc Museur, Jean-Pierre Michel, Patrick Portes, Apostolis Englezis, Andreas Stassinopoulos, Demetrios Anglos, and Andrei V. Kanaev, "Femtosecond UV laser non-ablative surface structuring of ZnO crystal: impact on exciton photoluminescence," J. Opt. Soc. Am. B 27, 531-535 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-3-531


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter 16, R829-R858 (2004). [CrossRef]
  2. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 041301 (2005). [CrossRef]
  3. A. Ashrafi and C. Jagadish, “Review of zincblende ZnO: stability of metastable ZnO phases,” J. Appl. Phys. 102, 071101 (2007). [CrossRef]
  4. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656-3658 (1998). [CrossRef]
  5. S. Monticone, R. Tufeu, and A. V. Kanaev, “Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles,” J. Phys. Chem. B 102, 2854-2862 (1998). [CrossRef]
  6. A. B. Djurisic and H. Y. Leung, “Optical properties of ZnO nanostructures,” Small 2, 944-961 (2006). [CrossRef] [PubMed]
  7. W. Cao and W. Du, “Strong exciton emission from ZnO microcrystal formed by continuous 532 nm laser irradiation,” J. Lumin. 124, 260-264 (2007). [CrossRef]
  8. Y. Sun and M. N. R. Ashfold, “Photoluminescence from diameter-selected ZnO nanorod arrays,” Nanotechnology 18, 245701 (2007). [CrossRef]
  9. C. Jin, A. Tiwari, and R. J. Narayan, “Ultraviolet-illumination-enhanced photoluminescence effect in zinc oxide thin films,” J. Appl. Phys. 98, 083707 (2005). [CrossRef]
  10. M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structure on ZnO fabricated by two-beam femtosecond laser ablation,” Nanotechnology 18, 505301 (2007). [CrossRef]
  11. T. Jia, M. Baba, M. Suzuki, R. A. Ganeev, H. Kuroda, J. Qiu, X. Wang, R. Li, and Z. Xu, “Fabrication of two-dimensional periodic nanostructures by two-beam interference of femtosecond pulses,” Opt. Express 16, 1874-1878 (2008). [CrossRef] [PubMed]
  12. X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, and X. W. Sun, “Raman spectroscopy and luminescent properties of ZnO nanostructures fabricated by femtosecond laser pulses,” Mater. Lett. 61, 4583-4586 (2007). [CrossRef]
  13. N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E. M. Kaidashev, A. Kasic, M. Schubert, and M. Grundmann, “Infrared dielectric functions and phonon modes of high-quality ZnO films,” J. Appl. Phys. 93, 126-133 (2003). [CrossRef]
  14. R. Wagner and J. Gottmann, “Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation,” J. Phys.: Conf. Ser. 59, 333-337 (2007). [CrossRef]
  15. F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub-damage-threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys. A 79, 1429-1432 (2004). [CrossRef]
  16. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Self-organized tungsten nanospikes grown on subwavelength ripples induced by femtosecond laser pulses,” Opt. Express 15, 15741-15746 (2007). [CrossRef] [PubMed]
  17. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197-198, 891-895 (2002). [CrossRef]
  18. F. Costache, M. Henyk, and J. Reif, “Surface patterning on insulators upon femtosecond laser ablation,” Appl. Surf. Sci. 208-209, 486-491 (2003). [CrossRef]
  19. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90, 153115 (2007). [CrossRef]
  20. M. Raff, M. Schütze, C. Trappe, R. Hannot, and H. Kurz, “Laser-stimulated nonthermal particle emission from InP and GaAs surfaces,” Phys. Rev. B 50, 11031-11036 (1994). [CrossRef]
  21. http://www.mt-berlin.com/frames_cryst/descriptions/substrates.htm.
  22. J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14, 425-441 (2004). [CrossRef] [PubMed]
  23. B. J. Lawrie, R. F. Haglund, and R. Mu, “Enhancement of ZnO photoluminescence by localized and propagating surface plasmons,” Opt. Express 17, 2565-2572 (2009). [CrossRef] [PubMed]
  24. P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92, 041119 (2008). [CrossRef]
  25. M.-K. Lee, T. G. Kim, W. Kim, and Y.-M. Sung, “Surface plasmon resonance (SPR) electron and energy transfer in noble metal-zinc oxide composite nanocrystals,” J. Phys. Chem. C 112, 10079-10082 (2008). [CrossRef]
  26. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995).
  27. J. Serrano, A. H. Romero, F. J. Manjón, R. Lauck, M. Cardona, and A. Rubio, “Pressure dependence of the lattice dynamics of ZnO: an ab initio approach,” Phys. Rev. B 69, 094306 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited