OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 550–559

Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers

Alexander M. Heidt  »View Author Affiliations


JOSA B, Vol. 27, Issue 3, pp. 550-559 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000550


View Full Text Article

Enhanced HTML    Acrobat PDF (868 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Supercontinuum (SC) generation in all-normal dispersion photonic crystal fiber under high energy femtosecond pumping is numerically investigated. It is shown that coherent octave spanning SC spectra with flatness of better than ±1 dB can be achieved over the entire bandwidth. A single pulse is maintained in the time domain, which may be externally compressed to the sub-10 fs regime even by simple linear chirp elimination. The single optical cycle limit is approached for full phase compensation, leading to peak power spectral densities of multiple kilowatts/nanometer. The generated SC is therefore ideal for applications which require high broadband spectral power densities as well as a defined pulse profile in the time domain. The properties of the generated SC are shown to be independent of the input pulse duration.

© 2010 Optical Society of America

OCIS Codes
(060.4005) Fiber optics and optical communications : Microstructured fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 15, 2009
Manuscript Accepted: December 26, 2009
Published: February 25, 2010

Citation
Alexander M. Heidt, "Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers," J. Opt. Soc. Am. B 27, 550-559 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-3-550


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Alfano, The Supercontinuum Laser Source (Springer, 2006). [CrossRef]
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  3. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. Knight, W. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic crystal fibers,” Phys. Rev. Lett. 88, 173901 (2002). [CrossRef] [PubMed]
  4. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174-1176 (2002). [CrossRef]
  5. X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, and R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697-2703 (2003). [CrossRef] [PubMed]
  6. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003). [CrossRef] [PubMed]
  7. M. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181-6192 (2005). [CrossRef] [PubMed]
  8. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045-1054 (2004). [CrossRef] [PubMed]
  9. M.-L. V. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles,” Opt. Express 14, 4445-4451 (2006). [CrossRef] [PubMed]
  10. E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fiber,” J. Opt. Soc. Am. B 22, 1934-1938 (2005). [CrossRef]
  11. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24, 1771-1785 (2007). [CrossRef]
  12. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806-1808 (1997). [CrossRef]
  13. P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535-7540 (2005). [CrossRef] [PubMed]
  14. A. M. Heidt, J. P. Burger, J.-N. Maran, and N. Traynor, “High power and high energy ultrashort pulse generation with a frequency shifted feedback fiber laser,” Opt. Express 15, 15892-15897 (2007). [CrossRef] [PubMed]
  15. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34, 593-595 (2009). [CrossRef] [PubMed]
  16. B. Ortaç, M. Baumgartl, J. Limpert, and A. Tünnermann, “Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers,” Opt. Lett. 34, 1585-1587 (2009). [CrossRef] [PubMed]
  17. A. M. Heidt, G. Bosman, M. Becker, M. Rothhardt, K. Schuster, J. Kobelke, and H. Bartelt, “Prospects of high energy ultrashort pulse generation with frequency shifted feedback fiber oscillators,” in European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference (IEEE, 2009), paper CJ.P. 37. [CrossRef] [PubMed]
  18. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24, 1786-1792 (2007). [CrossRef]
  19. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42, 989-991 (2006). [CrossRef]
  20. M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett. 29, 1739-1741 (2004). [CrossRef] [PubMed]
  21. K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13, 267-274 (2005). [CrossRef] [PubMed]
  22. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  23. J. Hult, “A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25, 3770-3775 (2007). [CrossRef]
  24. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159-1166 (1989). [CrossRef]
  25. A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27, 3984-3991 (2009). [CrossRef]
  26. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  27. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking in nonlinear optical fibers,” J. Opt. Soc. Am. B 9, 1358-1361 (1992). [CrossRef]
  28. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking or coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938-1948 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited