OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 3 — Mar. 1, 2010
  • pp: 605–610

Low-frequency surface plasmon excitations in multicoaxial negative-index metamaterial cables

M. S. Kushwaha and B. Djafari-Rouhani  »View Author Affiliations


JOSA B, Vol. 27, Issue 3, pp. 605-610 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000605


View Full Text Article

Enhanced HTML    Acrobat PDF (447 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By using an elegant response function theory, which does not require matching of the messy boundary conditions, we investigate the surface plasmon excitations in the multicoaxial cylindrical cables made up of negative-index metamaterials. The multicoaxial cables with dispersive metamaterial components exhibit a rather richer (and complex) plasmon spectrum with each interface supporting two modes: one TM and the other TE for m 0 (the integer order of the Bessel function). The cables with nondispersive metamaterial components bear a different tale: they do not support simultaneously both TM and TE modes over the whole range of propagation vector. The computed local and total density of states enable us to substantiate spatial positions of the modes in the spectrum. Such quasi-one-dimensional systems as studied here should prove to be the milestones of the emerging optoelectronics and telecommunications systems.

© 2010 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Materials

History
Original Manuscript: November 18, 2009
Revised Manuscript: February 1, 2010
Manuscript Accepted: February 2, 2010
Published: February 26, 2010

Citation
M. S. Kushwaha and B. Djafari-Rouhani, "Low-frequency surface plasmon excitations in multicoaxial negative-index metamaterial cables," J. Opt. Soc. Am. B 27, 605-610 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-3-605


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. For an extensive review of electronic, optical, and transport properties of surfaces/interfaces, thin films, inversion layers, and systems of reduced dimensions such as quantum wells, wires, dots, and (electrically and/or magnetically) modulated 2D systems, see M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep. 41, 1-416 (2001). [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998). [CrossRef]
  3. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  4. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  5. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601-5603 (2001). [CrossRef] [PubMed]
  6. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847-848 (2004). [CrossRef] [PubMed]
  7. D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies,” Appl. Phys. Lett. 75, 1425-1427 (1999). [CrossRef]
  8. F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002). [CrossRef] [PubMed]
  9. J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004). [CrossRef] [PubMed]
  10. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006). [CrossRef] [PubMed]
  11. Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008). [CrossRef]
  12. A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96, 073904 (2006). [CrossRef] [PubMed]
  13. A. P. Hibbins, M. J. Lockyear, and J. R. Sambles, “Coupled surface-plasmon-like modes between metamaterial,” Phys. Rev. B 76, 165431 (2007). [CrossRef]
  14. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102, 073901 (2009). [CrossRef] [PubMed]
  15. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  16. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  17. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001). [CrossRef] [PubMed]
  18. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008). [CrossRef] [PubMed]
  19. M. G. Silveirinha, “Anomalous refraction of light colors by a metamaterial prism,” Phys. Rev. Lett. 102, 193903 (2009). [CrossRef] [PubMed]
  20. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  21. M. S. Kushwaha and B. Djafari-Rouhani, “Theory of confined plasmonic waves in coaxial cylindrical cables fabricated of metamaterials,” J. Opt. Soc. Am. B 27, 148-167 (2010). [CrossRef]
  22. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415-419 (2000). [CrossRef] [PubMed]
  23. G. D. Banyard, C. R. Bennett, and M. Babiker, “Enhancement of energy relaxation rates near metal-coated dielectric cylinders,” Opt. Commun. 207, 195-200 (2002). [CrossRef]
  24. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Complete band gaps in one-dimensional left-handed periodic structures,” Phys. Rev. Lett. 95, 193903 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited