OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 4 — Apr. 1, 2010
  • pp: 667–674

Few-cycle optical pulse production from collimated femtosecond laser beam filamentation

Daria Uryupina, Maria Kurilova, Anna Mazhorova, Nikolay Panov, Roman Volkov, Stepan Gorgutsa, Olga Kosareva, Andrei Savel’ev, and See Leang Chin  »View Author Affiliations

JOSA B, Vol. 27, Issue 4, pp. 667-674 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (501 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A scheme for stable shot-to-shot few-cycle pulse production has been realized by launching an initially collimated laser beam into a gas tube. We found that the optimum parameters for the sevenfold compression of 55 fs , 5 mJ , Ti:Sapphire laser pulses are the following: 0.8 0.9 atm argon gas pressure and the registration aperture with a diameter of 300 700 μ m . A technique for the efficient extraction of the self-compressed pulse from the desired position along the filament has been provided by moving the registration aperture along the tube. With this technique, pulses as short as 8 fs were detected at a distance of 1 m from the filament starting position, in agreement with numerical simulations performed using a 3 D + time axially symmetric code.

© 2010 Optical Society of America

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.5520) Ultrafast optics : Pulse compression
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: December 2, 2009
Manuscript Accepted: January 11, 2010
Published: March 9, 2010

Daria Uryupina, Maria Kurilova, Anna Mazhorova, Nikolay Panov, Roman Volkov, Stepan Gorgutsa, Olga Kosareva, Andrei Savel'ev, and See Leang Chin, "Few-cycle optical pulse production from collimated femtosecond laser beam filamentation," J. Opt. Soc. Am. B 27, 667-674 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Nisoli, S. de Silvestri, O. Svelto, R. Szipöcz, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522-524 (1997). [CrossRef] [PubMed]
  2. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006). [CrossRef]
  3. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B: Lasers Opt. 79, 673-677 (2004). [CrossRef]
  4. S. Bohman, A. Suda, M. Kaku, M. Nurhuda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5 fs, 0.5 TW pulses focusable to relativistic intensities at 1 kHz,” Opt. Express 16, 10684-10689 (2008). [CrossRef] [PubMed]
  5. G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31, 274-276 (2006). [CrossRef] [PubMed]
  6. C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fsmJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006). [CrossRef]
  7. A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, U. Keller, A. Couairon, M. Franco, and A. Mysyrowicz, “Spatiotemporal characterization of few-cycle pulses obtained by filamentation,” Opt. Express 15, 5394-5404 (2007). [CrossRef] [PubMed]
  8. S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006). [CrossRef]
  9. O. G. Kosareva, N. A. Panov, D. S. Uryupina, M. V. Kurilova, A. V. Mazhorova, A. B. Savel'ev, R. V. Volkov, V. P. Kandidov, and S. L. Chin, “Optimization of a femtosecond pulse self-compression region along a filament in air,” Appl. Phys. B: Lasers Opt. 91, 35-43 (2008). [CrossRef]
  10. A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77, 053814 (2008). [CrossRef]
  11. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V. P. Kandidov, O. G. Kosareva, and H. Schroeder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863-905 (2005). [CrossRef]
  12. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 44, 47-189 (2007). [CrossRef]
  13. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633-1713 (2007). [CrossRef]
  14. V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quantum Electron. 39, 205-228 (2009). [CrossRef]
  15. A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, “Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient,” Opt. Lett. 30, 2657-2659 (2005). [CrossRef] [PubMed]
  16. V. P. Kandidov, O. G. Kosareva, and A. A. Koltun, “Nonlinear-optical transformation of a high-power femtosecond laser pulse in air,” Quantum Electron. 33, 69-75 (2003). [CrossRef]
  17. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938-2841 (1999). [CrossRef]
  18. W. Liu, F. Theberge, E. Arévalo, J.-F. Gravel, A. Becker, and S. L. Chin, “Experiment and simulations on the energy reservoir effect in femtosecond light filaments,” Opt. Lett. 30, 2602-2604 (2005). [CrossRef] [PubMed]
  19. M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, R. V. Volkov, S. R. Gorgutsa, N. A. Panov, O. G. Kosareva, and A. B. Savel'ev, “Formation of optical pulses down to 8 fs during femtosecond filamentation of collimated laser radiation in Argon,” Quantum Electron. 39, 879-881 (2009). [CrossRef]
  20. G. Stibenz and G. Steinmeyer, “Optimizing spectral phase interferometry for direct electric-field reconstruction,” Rev. Sci. Instrum. 77, 073105 (2006). [CrossRef]
  21. C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501-509 (1999). [CrossRef]
  22. M. V. Kurilova, D. S. Uryupina, A. V. Mazhorova, S. R. Gorgutsa, R. V. Volkov, O. G. Kosareva, and A. B. Savel'ev, “Investigation of the transformation of the spectrum of femtosecond laser radiation on filamentation in gas medium,” Opt. Spectrosc. 107, 429-434 (2009). [CrossRef]
  23. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35-110 (1975). [CrossRef]
  24. Critical power for self-focusing in argon was measured by P. T. Simard and S. L. Chin according to the technique published in the paper by W. Liu and S. L. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13, 5750-5755 (2005). [CrossRef] [PubMed]
  25. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3294 (1997). [CrossRef]
  26. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282 (1997). [CrossRef]
  27. N. Akozbek, M. Scalora, M. C. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultrashort laser pulses in air,” Opt. Commun. 191, 353-362 (2001). [CrossRef]
  28. Yu. P. Raizer, Gas Discharge Physics (Springer-Verlag, 1991). [CrossRef]
  29. A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924-934 (1966).
  30. L. Berge, S. Skupin, and G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett. 101, 213901 (2008). [CrossRef] [PubMed]
  31. B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, and O. Vasseur, “Spatial mode cleaning by femtosecond filamentation in air,” Opt. Lett. 31, 2601-2603 (2006). [CrossRef] [PubMed]
  32. W. Liu and S. L. Chin, “Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation,” Phys. Rev. A 76, 013826 (2007). [CrossRef]
  33. W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, “Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol),” Opt. Commun. 225, 193-209 (2003). [CrossRef]
  34. J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B: Lasers Opt. 71, 877-879 (2000). [CrossRef]
  35. L. Berge and S. Skupin, “Few-cycle light bullets created by femtosecond filaments,” Phys. Rev. Lett. 100, 113902 (2008). [CrossRef] [PubMed]
  36. O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19, 1776-1792 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited