OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 4 — Apr. 1, 2010
  • pp: 714–718

Angular splitting in half Kapitza–Dirac effect of H 2 + molecules

Xianghe Ren, Jingtao Zhang, Zhizhan Xu, and D.-S. Guo  »View Author Affiliations

JOSA B, Vol. 27, Issue 4, pp. 714-718 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (238 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The half Kapitza–Dirac effect following photoionization of molecules in intense standing-wave laser fields is studied. Photoelectron angular distributions (PADs) of molecules split towards the laser propagation and exhibit multiple splitting, which manifests the integer property of the ponderomotive parameter, as the laser intensity increases. The PADs are asymmetric about the laser polarization plane and vary with the molecular alignment as well as the kinetic energy of photoelectrons.

© 2010 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Atomic and Molecular Physics

Original Manuscript: September 4, 2009
Revised Manuscript: February 15, 2010
Manuscript Accepted: February 18, 2010
Published: March 22, 2010

Xianghe Ren, Jingtao Zhang, Zhizhan Xu, and D.-S. Guo, "Angular splitting in half Kapitza-Dirac effect of H2+ molecules," J. Opt. Soc. Am. B 27, 714-718 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. H. Bucksbaum, D. W. Schumacher, and M. Bashkansky, “High-intensity Kapitza-Dirac effect,” Phys. Rev. Lett. 61, 1182-1185 (1988). [CrossRef] [PubMed]
  2. P. L. Kapitza and P. A. M. Dirac, “The reflection of electrons from standing light waves,” Proc. Cambridge Philos. Soc. 29, 297-300 (1933). [CrossRef]
  3. D.-S. Guo and G. W. F. Drake, “Multiphoton ionization in circularly polarized standing waves,” Phys. Rev. A 45, 6622-6635 (1992). [CrossRef] [PubMed]
  4. D. L. Freimund, K. Aflatoon, and H. Batelaan, “Observation of the Kapitza-Dirac effect,” Nature 413, 142-143 (2001). [CrossRef] [PubMed]
  5. S. Altshuler, L. M. Frantz and R. Braunstein, “Reflection of atoms from standing light waves,” Phys. Rev. Lett. 17, 231-232 (1966). [CrossRef]
  6. P. J. Martin, B. G. Oldaker, A. H. Miklich, and D. E. Pritchard, “Bragg scattering of atoms from a standing light wave,” Phys. Rev. Lett. 60, 515-518 (1988). [CrossRef]
  7. P. L. Gould, G. A. Ruff, and D. E. Pritchard, “Diffraction of atoms by light: the near-resonant Kapitza-Dirac effect,” Phys. Rev. Lett. 56, 827-830 (1986). [CrossRef] [PubMed]
  8. H. Batelaan, “The Kapitza-Dirac effect,” Contemp. Phys. 41, 369-381 (2000). [CrossRef]
  9. C. Guo, M. Li, J. P. Nibarger, and G. N. Gibson, “Single and double ionization of diatomic molecules in strong laser fields,” Phys. Rev. A 58, R4271-R4274 (1998). [CrossRef]
  10. C. Guo, “Multielectron effects on single-electron strong field ionization,” Phys. Rev. Lett. 85, 2276-2279 (2000). [CrossRef] [PubMed]
  11. J. Muth-Bőhm, A. Becker, and F. H. M. Faisal, “Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields,” Phys. Rev. Lett. 85, 2280-2283 (2000). [CrossRef] [PubMed]
  12. X. Ren, J. Zhang, P. Liu, Y. Wang, and Z. Xu, “Ionization suppression of diatomic molecules in strong laser fields,” Phys. Rev. A 78, 043411 (2008). [CrossRef]
  13. O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of complex molecules by structures made of light,” Phys. Rev. Lett. 87, 160401 (2001). [CrossRef] [PubMed]
  14. H. Stapelfeldt and T. Seideman, “Colloquium: aligning molecules with strong laser pulses,” Rev. Mod. Phys. 75, 543-557 (2003). [CrossRef]
  15. P. Dooley, I. V. Litvinyuk, K. F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, “Direct imaging of rotational wave-packet dynamics of diatomic molecules,” Phys. Rev. A 68, 023406 (2003). [CrossRef]
  16. D. Pavičić, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, “Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields,” Phys. Rev. Lett. 98, 243001 (2007). [CrossRef] [PubMed]
  17. M. Okunishi, R. Itaya, K. Shimada, G. Prümper, K. Ueda, M. Busuladžić, A. Gazibegović-Busuladžić, D. B. Milošević, and W. Becker, “Two-source double-slit interference in angle-resolved high-energy above-threshold ionization spectra of diatoms,” Phys. Rev. Lett. 103, 043001 (2009). [CrossRef] [PubMed]
  18. R. Gush and H. P. Gush, “Electron scattering from a standing light wave,” Phys. Rev. D 3, 1712-1721 (1971). [CrossRef]
  19. E. A. Coutsias and J. K. McIver, “Nonrelativistic Kapitza-Dirac scattering,” Phys. Rev. A 31, 3155-3168 (1985). [CrossRef] [PubMed]
  20. R. Z. Olshan, A. Gover, S. Ruschin, and H. Kleinman, “Observation of electron trapping and phase-area displacement in the interaction between an electron beam and two counter-propagating laser beams,” Phys. Rev. Lett. 58, 483-486 (1987). [CrossRef] [PubMed]
  21. L. Rosenberg, “Effect of virtual Compton scattering on electron propagation in a laser field,” Phys. Rev. A 49, 1122-1130 (1994). [CrossRef] [PubMed]
  22. D.-S. Guo, T. Åberg, and B. Crasemann, “Scattering theory of multiphoton ionization in strong fields,” Phys. Rev. A 40, 4997-5005 (1989). [CrossRef] [PubMed]
  23. D.-S. Guo, “Theory of the Kapitza-Dirac effect in strong radiation fields,” Phys. Rev. A 53, 4311-4319 (1996). [CrossRef] [PubMed]
  24. X. Li, J. Zhang, Z. Xu, P. Fu, D.-S. Guo, and R. R. Freeman, “Theory of the Kapitza-Dirac diffraction effect,” Phys. Rev. Lett. 92, 233603 (2004). [CrossRef] [PubMed]
  25. X. Hu, H. X. Wang, and D.-S. Guo, “Phased Bessel functions,” Can. J. Phys. 86, 863-870 (2008). [CrossRef]
  26. H. D. Cohen and U. Fano, “Interference in the photo-ionization of molecules,” Phys. Rev. 150, 30-33 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited