OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 4 — Apr. 1, 2010
  • pp: 719–724

Long rectangle resonator 1550 nm Al Ga In As In P lasers

Shi-Jiang Wang, Yong-Zhen Huang, Yue-De Yang, Jian-Dong Lin, Kai-Jun Che, Jin-Long Xiao, and Yun Du  »View Author Affiliations

JOSA B, Vol. 27, Issue 4, pp. 719-724 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (615 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



1550 nm Al Ga In As In P long rectangle resonator lasers with three sides surrounded by Si O 2 and p electrode layers are fabricated by planar technology, and room-temperature continuous-wave lasing is realized for a laser with a length of 53 μ m and a width of 2 μ m . Multiple peaks with wavelength intervals of Fabry–Pérot mode intervals and mode Q factors of about 400 and a lasing mode with a Q factor over 8000 are observed from the lasing spectrum at threshold current. The numerical results of the FDTD simulation indicate that the lasing mode may be a whispering-gallery mode, which is a coupled mode of two high-order transverse modes of the waveguide.

© 2010 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 9, 2009
Revised Manuscript: January 29, 2010
Manuscript Accepted: February 7, 2010
Published: March 22, 2010

Shi-Jiang Wang, Yong-Zhen Huang, Yue-De Yang, Jian-Dong Lin, Kai-Jun Che, Jin-Long Xiao, and Yun Du, "Long rectangle resonator 1550 nm AlGaInAs/InP lasers," J. Opt. Soc. Am. B 27, 719-724 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  2. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289-291 (1992). [CrossRef]
  3. M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999). [CrossRef]
  4. Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94, 061109 (2009). [CrossRef]
  5. Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photonics Technol. Lett. 19, 963-965 (2007). [CrossRef]
  6. H. J. Moon, K. An, and J. H. Lee, “Single spatial-mode selection in a layered square microcavity laser,” Appl. Phys. Lett. 82, 2963-2965 (2003). [CrossRef]
  7. Y. Z. Huang, K. J. Che, Y. D. Yang, S. J. Wang, and Z. C. Fan, “Directional emission InP/InGaAsP square-resonator microlasers,” Opt. Lett. 33, 2170-2172 (2008). [CrossRef] [PubMed]
  8. C. F. Zhang, F. Zhang, X. W. Sun, Y. Yang, J. Wang, and J. Xu, “Frequency-upconverted whispering-gallery mode lasing in ZnO hexagonal nanodisks,” Opt. Lett. 34, 3349-3351 (2009). [CrossRef] [PubMed]
  9. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. C. Zhu, M. H. Sun, P. J. Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal subwavelength plasmonic waveguides,” Opt. Express 17, 11107-11112 (2009). [CrossRef] [PubMed]
  10. M. Lohmeyer, “Mode expansion modeling of rectangular integrated optical microresonators,” Opt. Quantum Electron. 34, 541-557 (2002). [CrossRef]
  11. M. Hammer, “Resonant coupling of dielectric optical waveguides via rectangular microcavities: the coupled guided mode perspective,” Opt. Commun. 214, 155-170 (2002). [CrossRef]
  12. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Modes in square resonators,” IEEE J. Quantum Electron. 39, 1563-1566 (2003). [CrossRef]
  13. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far-field emission for square resonator,” IEEE Photonics Technol. Lett. 16, 479-481 (2004). [CrossRef]
  14. D. V. Batrak, A. P. Bogatov, A. E. Drakin, and D. R. Miftakhutdinov, “Modes of a semiconductor rectangular microcavity,” Quantum Electron. 38, 16-22 (2008). [CrossRef]
  15. Y. D. Yang and Y. Z. Huang, “Mode analysis and Q-factor enhancement due to mode coupling in rectangle resonators,” IEEE J. Quantum Electron. 43, 497-502 (2007). [CrossRef]
  16. K. J. Che, Y. D. Yang, and Y. Z. Huang, “Multimode resonances of metallic-confined square-resonator microlasers,” Appl. Phys. Lett. 96, 051104 (2010). [CrossRef]
  17. A. Taflove and S. C. Hagness, in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  18. Y. D. Yang, Y. Z. Huang, and Q. Chen, “Comparison of Q-factors between TE and TM modes in 3-D Microsquares by FDTD simulation,” IEEE Photonics Technol. Lett. 19, 1831-1833 (2007). [CrossRef]
  19. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099-1020 (1983). [CrossRef] [PubMed]
  20. S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997). [CrossRef]
  21. W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wirel. Compon. Lett. 11, 223-225 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited