OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 4 — Apr. 1, 2010
  • pp: 730–734

IR permittivities for silicides and doped silicon

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald  »View Author Affiliations


JOSA B, Vol. 27, Issue 4, pp. 730-734 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000730


View Full Text Article

Enhanced HTML    Acrobat PDF (385 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The complex permittivity for Pt, Pd, Ni, and Ti-silicide films as well as heavily doped p- and n-type silicon were determined by ellipsometry over the energy range 0.031 eV to 4.0 eV . Fits to the Drude model gave bulk plasma and relaxation frequencies. Rutherford backscattering spectroscopy, X-ray diffraction, scanning electron microscopy, secondary ion mass spectrometry, and four-point probe measurements complemented the optical characterization. Calculations from measured permittivities of waveguide loss and mode confinement suggest that the considered materials are better suited for long-wavelength surface-plasmon-polariton waveguide applications than metal films.

© 2010 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.3130) Materials : Integrated optics materials
(240.6680) Optics at surfaces : Surface plasmons
(260.3090) Physical optics : Infrared, far
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Materials

History
Original Manuscript: October 2, 2009
Revised Manuscript: January 26, 2010
Manuscript Accepted: February 2, 2010
Published: March 23, 2010

Citation
J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, "IR permittivities for silicides and doped silicon," J. Opt. Soc. Am. B 27, 730-734 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-4-730


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007). [CrossRef]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. R. R. Musin, Q. Xing, Y. Li, M. Hu, L. Chai, Q. Wang, Y. M. Mikhailova, M. M. Nazarov, A. P. Shkurinov, and A. M. Zheltikov, “Design rules for phase-matched terahertz surface electromagnetic wave generation by optical rectification in a nonlinear planar waveguide,” Appl. Opt. 47, 489-494 (2008). [CrossRef] [PubMed]
  4. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 μm wavelength,” Appl. Phys. Lett. 66, 3242-3244 (1995). [CrossRef]
  5. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413-422 (2005). [CrossRef]
  6. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507-6514 (2008). [CrossRef] [PubMed]
  7. A. Sellai, P. G. Mc Cafferty, P. Dawson, S. H. Raza, and H. S. Gamble, “Surface plasmons on PtSi for visible and infrared Schottky barrier enhanced detection,” Proc. SPIE 1735, 240-249 (1992). [CrossRef]
  8. A. Sellai, P. Dawson, W. R. Hendren, S. H. S. Magill, and H. S. Gamble, “Infra-red surface plasmons on platinum silicide,” Electron. Lett. 28, 164-165 (1992). [CrossRef]
  9. J. Cleary, R. E. Peale, D. Shelton, G. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Mater. Res. Soc. Symp. Proc.1133-AA10-03 (2008).
  10. Y. Chen, “Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and chemical applications,” Opt. Express 17, 3130-3140 (2009). [CrossRef] [PubMed]
  11. H. Chen and J. Lue, “Ellipsometry measurements of nickel silicides,” J. Appl. Phys. 59, 2165-2167 (1986). [CrossRef]
  12. J. H. Lue, H. Chen, and S. Lew, “Optical constants of palladium silicides measured by a multiple-wavelength ellipsometer,” Phys. Rev. B 34, 5438-5442 (1986). [CrossRef]
  13. H. Bentmann, A. Demkov, R. Gregory, and S. Zollner, “Electronic, optical and surface properties of PtSi thin film,” Phys. Rev. B 78, 205302 (2008). [CrossRef]
  14. J. Lue and S. Mu, “Ellipsometry and structural studies of chromium, molybdenum, and platinum silicides,” Phys. Rev. B 36, 1657-1661 (1987). [CrossRef]
  15. K. Lee and J. T. Lue, “Formation of titanium silicides and their refractive index measurements,” Phys. Lett. A 125, 271-275 (1987). [CrossRef]
  16. J. R. Jimenez, Z. Wu, L. J. Schowaiter, B. D. Hunt, R. W. Fathauer, P. J. Grunthaner, and T. L. Lin, “Optical properties of epitaxial CoSi2 and NiSi2 films on silicon,” J. Appl. Phys. 66, 2738-2741 (1989). [CrossRef]
  17. M. Amiotti, A. Borghesi, G. Guizzetti, and F. Nava, “Optical properties of polycrystalline nickel silicides,” Phys. Rev. B 42, 8939-8946 (1990). [CrossRef]
  18. J. M. Pimbley and W. Katz, “Infrared optical constants of PtSi,” Appl. Phys. Lett. 42, 984-986 (1983). [CrossRef]
  19. W. Henrion and H. Lange, “Optical properties of high-refractory disilicide thin films,” Phys. Status Solidi B 151, 375-382 (1989). [CrossRef]
  20. J. M. Mooney, “Infrared optical absorption of thin PtSi films between 1 and 6 μm,” J. Appl. Phys. 64, 4664-4667 (1988). [CrossRef]
  21. M. Amiotti, G. Guizzetti, F. Marabelli, A. Piaggi, V. N. Antonov, Vl. N. Antonov, O. Jepsen, O. K. Andersen, A. Borghesi, F. Nava, V. V. Nemonshkalendo, R. Madar, and A. Rouault, “Optical properties of Pd2Si,” Phys. Rev. B 45, 13285-13292 (1992). [CrossRef]
  22. A. Borghesi, A. Piaggi, G. Guizzetti, F. Levy, M. Tanaka, and H. Fukutani, “Optical properties of single-crystal titanium disilicide,” Phys. Rev. B 40, 1611-1615 (1989). [CrossRef]
  23. M. Tanaka, S. Kurita, M. Fujisawa, and F. Levy, “Dielectric properties of single-crystal TiSi2 from 0.6to20 eV,” Phys. Rev. B 43, 9133-9137 (1991). [CrossRef]
  24. S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 1981).
  25. L. R. Doolittle, “A semiautomatic algorithm for Rutherford backscattering analysis,” Nucl. Instrum. Methods Phys. Res. B 15, 227-231 (1986). [CrossRef]
  26. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew, 2005). [CrossRef]
  27. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 1996).
  28. R. Soref, S.-Y. Cho, W. Buchwald, R. E. Peale, and J. Cleary, “Silicon plasmonic waveguides,” Chapter 1 in An Introduction to Silicon Photonics, S.Fathpour and B.Jalali, eds. (Taylor and Francis, 2010).
  29. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  30. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  31. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W,” Appl. Opt. 24, 4493-4499 (1985). [CrossRef] [PubMed]
  32. S. P. Mararka, Silicides for VSLI Applications (Academic, 1983).
  33. R. Marani, R. Nava, A. Rouault, R. Madar, and J. P. Senateur, “Crystal growth, charaterisation and resistivity measurements of Pd2Si single crystals,” J. Phys.: Condens. Matter 1, 5887-5893 (1989). [CrossRef]
  34. K. K. Ng, Complete Guide to Semiconductor Devices, 2nd ed. (Wiley, 2002).
  35. K. Maex and M. Van Rossum, Properties of Metal Silicides (Short Run Press, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited