OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 4 — Apr. 1, 2010
  • pp: 735–741

Time-dependent coupled mode analysis of parallel waveguides

Vladislav R. Shteeman, Inna Nusinsky, and Amos A. Hardy  »View Author Affiliations

JOSA B, Vol. 27, Issue 4, pp. 735-741 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (255 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Coupled mode theory for parallel waveguides is extended to include temporal variations of both the dielectric function of the photonic array and the input optical power. This formulation can be very useful for the design and comprehensive analysis of modern photonic devices, such as two-dimensional photonic crystals, represented by arrays of parallel waveguides. In the special case of a time-dependent input signal, but stationary dielectric constant, analytical solutions exist for the extended formulation. The accuracy and computer time of the formulation’s numerical solutions are examined against finite difference time domain and time-dependent beam propagation analyses of waveguide arrays.

© 2010 Optical Society of America

OCIS Codes
(140.3290) Lasers and laser optics : Laser arrays
(250.7360) Optoelectronics : Waveguide modulators
(160.5298) Materials : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: September 24, 2009
Revised Manuscript: January 4, 2010
Manuscript Accepted: January 8, 2010
Published: March 24, 2010

Vladislav R. Shteeman, Inna Nusinsky, and Amos A. Hardy, "Time-dependent coupled mode analysis of parallel waveguides," J. Opt. Soc. Am. B 27, 735-741 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62, 1267-1277 (1972). [CrossRef]
  2. V. Shteeman, D. Boiko, E. Kapon, and A. A. Hardy, “Extension of coupled mode analysis to periodic large arrays of identical waveguides for photonic crystals applications,” IEEE J. Quantum Electron. 43, 215-224 (2007). [CrossRef]
  3. V. Shteeman, I. Nusinsky, E. Kapon, and A. A. Hardy, “Extension of coupled mode analysis to infinite photonic superlattices,” IEEE J. Quantum Electron. 44, 826-833 (2008). [CrossRef]
  4. A. A. Hardy and W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. LT-3, 1135-1146 (1985). [CrossRef]
  5. A. A. Hardy and W. Streifer, “Coupled modes of multiwaveguide systems and phased arrays,” IEEE J. Lightwave Technol. LT-4, 90-99 (1986). [CrossRef]
  6. A. A. Hardy and E. Kapon, “Coupled mode formulations for parallel-laser resonators with application to vertical-cavity semiconductor-laser arrays,” IEEE J. Quantum Electron. 32, 966-971 (1996). [CrossRef]
  7. A. A. Hardy and W. Streifer, “Coupled mode solutions of multiwaveguide systems,” IEEE J. Quantum Electron. QE-22, 528-534 (1986). [CrossRef]
  8. A. A. Hardy, “A unified approach to coupled mode phenomena,” IEEE J. Quantum Electron. 34, 1109-1116 (1998). [CrossRef]
  9. V. Shteeman, I. Nusinsky, E. Kapon, and A. A. Hardy, “Analysis of photonic crystals with defects using coupled mode theory,” J. Opt. Soc. Am. B 26, 1248-1255 (2009). [CrossRef]
  10. F. Luan, A. George, T. Hedley, G. Pearce, D. Bird, J. Knight, and P. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369-2371 (2004). [CrossRef] [PubMed]
  11. M. Haakestad, T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819-821 (2005). [CrossRef]
  12. C.-C. Shih and A. Yariv, “A theoretical model of linear electro-optical effect,” J. Phys. C 15, 825-846 (1982). [CrossRef]
  13. X. Sun, A. Zadok, M. Shearn, K. Diest, A. Ghaffari, H. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett. 34, 1345-1347 (2009). [CrossRef] [PubMed]
  14. E. von Kamke, Differentialgleichungen-Lösungsmethoden und Lösungen (Verbesserte Auflage, 1959), Vol. II.
  15. S. Habraken and G. Nienhuis, “Modes of a rotating astigmatic optical cavity,” Phys. Rev. A 77, 053803 (2008). [CrossRef]
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  17. A. Locatelli, D. Modotto, C. Angelis, F. Pigozzo, and A. Capobianco, “Time domain bidirectional beam propagation method for second harmonic generation in multilayers,” Opt. Quantum Electron. 37, 121-131 (2005). [CrossRef]
  18. A. Snyder and J. Love, Optical Waveguide Theory (Kluwer, 2000).
  19. L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  20. J. Strikwerda, Finite Difference Schemes and Partial Differential Equations, The Wadsworth & Brooks/Cole Mathematics Series (Wadsworth & Brooks/Cole, 1989).
  21. A. A. Hardy and M. Ben-Artzi, “Expansion of an arbitrary field in terms of waveguide modes,” IEE Proc.: Optoelectron. 141, 16-20 (1994). [CrossRef]
  22. H. Kogelnik, “Theory of dielectric waveguides” in Integrated Optics, T.Tamir, ed., (Springer, 1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited