OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 4 — Apr. 1, 2010
  • pp: 787–795

Characterization and application of femtosecond infrared stimulated parametric emission microscopy

Xuejun Liu, Wolfgang Rudolph, and James L. Thomas  »View Author Affiliations

JOSA B, Vol. 27, Issue 4, pp. 787-795 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (607 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A four-wave mixing (FWM) microscopy that is designed to probe third-order nonlinear susceptibilities, χ ( 3 ) of target materials with femtosecond light pulses has been constructed and investigated. Nondegenerate FWM signals (at 1500 and 639 nm) were produced in samples by a femtosecond Ti:sapphire laser (790 nm) and a femtosecond optical parametric oscillator (1035 nm). While the effect of electronic and vibrational molecular resonances on the visible FWM signal has been extensively studied, little attention has been paid to the infrared (IR) signal. This IR signal should exhibit a different dependence on the spectrum of molecular electronic resonances, and thus potentially offers a new mechanism for image contrast in microscopy. We have therefore constructed a FWM microscope to characterize these signals in a focused geometry. In polymeric films and beads containing a solute with a resonant (or near-resonant) optical response, the nonresonant polymer background signal was effectively suppressed using polarization-sensitive detection. Longitudinal scans of the beam foci through films were used to determine relative nonlinear third-order susceptibilities and second hyperpolarizabilities of selected solvents and the Rhodamine 6G dye molecule, for both the visible and IR FWM wavelengths.

© 2010 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(180.4315) Microscopy : Nonlinear microscopy
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Nonlinear Optics

Original Manuscript: September 9, 2009
Revised Manuscript: December 17, 2009
Manuscript Accepted: January 12, 2010
Published: March 31, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Xuejun Liu, Wolfgang Rudolph, and James L. Thomas, "Characterization and application of femtosecond infrared stimulated parametric emission microscopy," J. Opt. Soc. Am. B 27, 787-795 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990). [CrossRef] [PubMed]
  2. J. N. Gannaway and C. J. R. Sheppard, “Second harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron. 10, 435-439 (1978). [CrossRef]
  3. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922-924 (1997). [CrossRef]
  4. M. D. Duncan, J. Reintjes, and D. Wiersma, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350-352 (1982). [CrossRef] [PubMed]
  5. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999). [CrossRef]
  6. E. Potma, W. de Boeij, and D. Wiersma, “Nonlinear coherent four-wave mixing in optical microscopy,” J. Opt. Soc. Am. B 17, 1678-1684 (2000). [CrossRef]
  7. M. Müller, J. Squier, C. A. de Lange, and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197, 150-158 (2000). [CrossRef] [PubMed]
  8. M. Hashimoto, T. Araki, and S. Kawata, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,” Opt. Lett. 25, 1768-1770 (2000). [CrossRef]
  9. K. Isobe, S. Kataoka, R. Murase, W. Watanabe, T. Higashi, S. Kawakami, S. Matsunaga, K. Fukui, and K. Itoh, “Stimulated parametric emission microscopy,” Opt. Express 14, 786-793 (2006). [CrossRef] [PubMed]
  10. K. Isobe, Y. Ozeki, T. Kawasumi, S. Kataoka, and S. Kajiyama, “Highly sensitive spectral interferometric four-wave mixing microscopy near the shot noise limit and its combination with two-photon excited fluorescence microscopy,” Opt. Express 14, 11204-11214 (2006). [CrossRef] [PubMed]
  11. P. Tian and W. S. Warren, “Ultrafast measurement of two-photon absorption by loss modulation,” Opt. Lett. 27, 1634-1636 (2002). [CrossRef]
  12. T. Ye, M. Fischer, G. Yurtsever, and W. S. Warren, “Two-photon absorption microscopy of tissue,” in Conference on Lasers and Electro-Optics (CLEO) (2005), Vol. 2, pp. 1512-1514. [CrossRef]
  13. C. Freudiger, W. Min, B. Saar, S. Lu, G. Holtom, C. He, J. Tsai, J. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857-1861 (2008). [CrossRef] [PubMed]
  14. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389-393 (2007). [CrossRef]
  15. X. Liu, W. Rudolph, and J. L. Thomas, “Photobleaching resistance of parametric fluorescence in microscopy,” Opt. Lett. 34, 304-306 (2009). [CrossRef] [PubMed]
  16. J.-L. Oudar, R. W. Smith, and Y.-R. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett. 34, 758-760 (1979). [CrossRef]
  17. J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26, 1341-1343 (2001). [CrossRef]
  18. H. Lotem, R. R. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing,” Phys. Rev. A 14, 1748-1755 (1976). [CrossRef]
  19. F. Kajzar and J. Messier, “Cubic hyperpolarizabilities and local electric field in alkanes and substituted alkanes,” J. Opt. Soc. Am. B 4, 1040-1046 (1987). [CrossRef]
  20. D. A. Kleinman, “Nonlinear dielectric polarization in optical media,” Phys. Rev. 126, 1977-1979 (1962). [CrossRef]
  21. W. Rudolph, P. Dorn, X. Liu, N. Vretenar, and R. Stock, “Microscopy with femtosecond laser pulses,” Appl. Surf. Sci. 208-209, 327-332 (2003). [CrossRef]
  22. R. W. Boyd, Nonlinear Optics, 1st ed. (Academic, 1992), p. 439.
  23. T. Ishigure, E. Nihei, and Y. Koike, “Optimum refractive-index profile of the graded-index polymer optical fiber, toward gigabit data links,” Appl. Opt. 35, 2048-2053 (1996). [CrossRef] [PubMed]
  24. G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287-296 (1975). [CrossRef]
  25. O. H. Wheeler, “Near infrared spectra of organic compounds,” Chem. Rev. (Washington, D.C.) 59, 629-666 (1959). [CrossRef]
  26. T. Shimanouchi, Tables of Molecular Vibrational Frequencies (U.S. Department of Commerce, National Bureau of Standards, 1967).
  27. F. Kajzar and J. Messier, “Third harmonic generation in liquids,” Phys. Rev. A 32, 2352-2363 (1985). [CrossRef] [PubMed]
  28. E. G. Baranova, “Study of the association of Rhodamine 6G in ethanol and glycerol solutions,” Opt. Spectrosc. 13, 452-456 (1962).
  29. K. Selanger, J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81, 1960-1963 (1977). [CrossRef]
  30. W. Leupacher and A. Penzkofer, “Third-order nonlinear susceptibilities of dye solutions determined by third-harmonic generation,” Appl. Phys. B 36, 25-31 (1985). [CrossRef]
  31. J. Selwyn and J. Steinfeld, “Aggregation equilibria of xanthene dyes,” J. Phys. Chem. 76, 762-774 (1972). [CrossRef]
  32. F. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics, 3rd ed. (Pearson Prentice Hall, 2007), p. 622.
  33. M. Klein and T. Furtak, Optics (Wiley, 1986), p. 660.
  34. C. Wohlfarth and B. Wohlfarth, Refractive Indices of Organic Liquids, Landolt-Börnstein (New Series) Volume Group III, M.D.Lechner, ed. (Springer-Verlag, 1996), Vol. 38, Subvol. B.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited