OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 4 — Apr. 1, 2010
  • pp: 796–805

Excitation temporal pulse shape and probe beam size effect on pulsed photothermal lens of single particle

Marta Andika, George Chung Kit Chen, and Srivathsan Vasudevan  »View Author Affiliations


JOSA B, Vol. 27, Issue 4, pp. 796-805 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000796


View Full Text Article

Enhanced HTML    Acrobat PDF (657 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed the theoretical model of the time-resolved thermal lens spectroscopy of a single particle with various pulse shape optical excitations. To account for the pulse shape optical excitation in the model, a heat diffusion equation of two media (the particle and liquid solvent) is solved using the numerical Laplace transform method. The model also incorporates the propagation of a diffracted Gaussian probe beam due to the thermal lens effect. Numerical results are presented to illustrate the effects of the excitation pulse shape and probe beam size on the evolution of the photothermal lens signal. The developed model is utilized for the thermal diffusivity and size extraction of a red polystyrene particle.

© 2010 Optical Society of America

OCIS Codes
(300.6430) Spectroscopy : Spectroscopy, photothermal
(350.5340) Other areas of optics : Photothermal effects
(350.6830) Other areas of optics : Thermal lensing

ToC Category:
Photothermal Effects

History
Original Manuscript: October 12, 2009
Revised Manuscript: February 4, 2010
Manuscript Accepted: February 4, 2010
Published: March 31, 2010

Citation
Marta Andika, George Chung Kit Chen, and Srivathsan Vasudevan, "Excitation temporal pulse shape and probe beam size effect on pulsed photothermal lens of single particle," J. Opt. Soc. Am. B 27, 796-805 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-4-796


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. V. Bindhu, S. S. Harihal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Thermal diffusivity measurements in organic liquids using transient thermal lens calorimetry,” Opt. Eng. 37, 2791-2794 (1998). [CrossRef]
  2. A. R. Nunes, J. H. Rohling, A. N. Medina, J. R. D. Pereira, A. C. Bento, M. L. Baesso, L. A. O. Nunes, and T. Catunda, “Time-resolved thermal lens determination of thermo-optical coefficients in Nd-doped yttrium aluminium garnet as a function of temperature,” Appl. Phys. Lett. 84, 5183-5185 (2004). [CrossRef]
  3. S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60, 15173-15178 (1999). [CrossRef]
  4. V. Anjos, M. J. V. Bell, E. A. de Vasconcelos, E. F. da Silva, Jr., A. A. Andrade, R. W. A. Franco, M. P. P. Castro, I. A. Esquef, and R. T. Faria, Jr., “Thermal lens and photo-acoustic method for the determination of SiC thermal properties,” Microelectron. J. 36, 977-980 (2005). [CrossRef]
  5. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nano-meter sized metal particles among scatterers,” Science 297, 1160-1163 (2002). [CrossRef] [PubMed]
  6. D. Lapotko, A. Shnip, and E. Lukianova, “Photothermal responses of individual cells,” J. Biomed. Opt. 10, 014006 (2005). [CrossRef]
  7. K. Mawatari, T. Kitamori, and T. Sawada, “Individual detection of single nano-meter-sized particles in liquid by photothermal detection,” Anal. Chim. Acta 299, 343-347 (1995). [CrossRef]
  8. R. Roscuni, L. Isa, and R. Piazza, “Thermal lensing measurement of particle thermophoresis in aqueous dispersions,” J. Opt. Soc. Am. B 21, 605-616 (2004). [CrossRef]
  9. E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74, 1560-1564 (2002). [CrossRef] [PubMed]
  10. D. Lapotko, T. Romanovskaya, and E. Gordiyko, “Photothermal monitoring of redox state of respiratory chain in single live cells,” Photochem. Photobiol. 75, 519-526 (2002). [CrossRef] [PubMed]
  11. D. A. Nedosekin, M. A. Proskurnin, and M. Y. Kononets, “Model for continuous-wave laser-induced thermal lens spectrometry of optically transparent surface-absorbing solids,” Appl. Opt. 44, 6296-6306 (2005). [CrossRef] [PubMed]
  12. J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser-induced mode-mismatched dual beam thermal lens spectrometry,” Chem. Phys. 165, 385-396 (1992). [CrossRef]
  13. A. Marcano, L. Rodriguez, and Y. Alvarado, “Mode-mismatched thermal lens experiment in the pulse regime,” J. Opt. A, Pure Appl. Opt. 5, S256-S261 (2003). [CrossRef]
  14. F. Jürgensen and W. Schroer, “Studies on the diffraction image of thermal lens,” Appl. Opt. 34, 41-50 (1995). [CrossRef] [PubMed]
  15. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford Science Publications, 1986).
  16. A. Cheng, Y. Abousleiman, and P. Sidauruk, “Approximate inversion of the Laplace transform,” Math. J. 4, 78-81 (1994).
  17. Y. Han, Z. L. Wu, J. S. Rosenshein, and M. Thomsen, “Pulsed photothermal deflection and diffraction effects: numerical modeling based on Fresnel diffraction theory,” Opt. Eng. 38, 2122-2128 (1999). [CrossRef]
  18. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, 1996).
  19. S. Vasudevan, G. C. K. Chen, and B. Ahluwalia, “Integration of laser trapping for continuous and selective monitoring of photothermal response of single micro-particle,” Opt. Lett. 33, 2779-2781 (2008). [CrossRef] [PubMed]
  20. D. Lapotko and V. P. Zharov, “Spectral evaluation of laser-induced cell damage with photothermal microscopy,” Lasers Surg. Med. 36, 22-30 (2005). [CrossRef] [PubMed]
  21. R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion for gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine 1, 473-480 (2006). [CrossRef]
  22. K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316-5322 (2000). [CrossRef]
  23. M. Hattori, “Thermal diffusivity of some linear polymers,” Kolloid-Zeitschrift und Zeitschrift fur polymers (1964).
  24. D. Lytle, G. W. Wilkerson, and J. G. Jaramillo, “Wideband optical transmission properties of seven thermoplastics,” Appl. Opt. 18, 1842-1846 (1979). [CrossRef] [PubMed]
  25. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308-1316 (2003). [CrossRef] [PubMed]
  26. L. Prod'homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119-122 (1962).
  27. M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient optical path length in soda lime at different wavelengths,” J. Appl. Phys. 75, 3732-3737 (1994). [CrossRef]
  28. A. Tuntomo, C. L. Tien, and S. H. Park, “Internal distribution of radiant absorption in a spherical particle,” J. Heat Transfer 113, 407-412 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited