OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 4 — Apr. 1, 2010
  • pp: 806–817

Performance assessment of hybrid surface emitting lasers with lateral one-dimensional photonic-crystal mirrors

Vajira S. Amaratunga, Malin Premaratne, Haroldo T. Hattori, Hark H. Tan, and Chennupati Jagadish  »View Author Affiliations


JOSA B, Vol. 27, Issue 4, pp. 806-817 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000806


View Full Text Article

Enhanced HTML    Acrobat PDF (366 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of vertical cavity surface emitting lasers can be enhanced, while simplifying the fabrication process, by adopting a hybrid design using a photonic-crystal (PhC) top mirror. In this paper, we analyze the performance of photonic-crystal surface emitting lasers (PCSELs) by varying the number of periods in the PhC mirror and estimating its reflectivity and lateral radiation losses. We consider three types of PhC mirrors: a simply periodic structure, a structure with a constant period but a variable filling factor (FF), and a structure with a constant FF but a variable period. We show that lateral losses can pose a serious limitation on the minimum size required to achieve an efficient PCSEL operation. We also show that our special structure can convert vertically emitted light into an in-plane light that propagates in the same plane as the PhC mirror creating the possibility of coupling vertically emitted light into optical waveguides. © 2010 Optical Society of America

© 2010 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(140.5960) Lasers and laser optics : Semiconductor lasers
(160.5298) Materials : Photonic crystals
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 17, 2009
Revised Manuscript: January 30, 2010
Manuscript Accepted: February 7, 2010
Published: March 31, 2010

Citation
Vajira S. Amaratunga, Malin Premaratne, Haroldo T. Hattori, Hark H. Tan, and Chennupati Jagadish, "Performance assessment of hybrid surface emitting lasers with lateral one-dimensional photonic-crystal mirrors," J. Opt. Soc. Am. B 27, 806-817 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-4-806


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. V. Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1402-1409 (1991). [CrossRef]
  2. A. Birkbeck, R. Flynn, M. Ozkan, D. Song, M. Gross, and S. Esener, “Vcsel arrays as micromanipulators in chip-based biosystems,” Biomed. Microdevices 5, 47-54 (2003). [CrossRef]
  3. G. Steinle, H. Riechert, and A. Y. Egorov, “Monolithic VCSEL with InGaAsN active region emitting at 1.28 μm and cw output power exceeding 500 μW at room temperature,” Electron. Lett. 37, 93-95 (2001). [CrossRef]
  4. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10, 283-295 (1993). [CrossRef]
  5. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998). [CrossRef]
  6. A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690-2692 (2001). [CrossRef]
  7. V. S. Amaratunga, H. T. Hattori, M. Premaratne, H. H. Tan, and C. Jagadish, “Photonic crystal phase detector,” J. Opt. Soc. Am. B 25, 1532-1536 (2008). [CrossRef]
  8. K. Liu, X. D. Yuan, W. M. Ye, and C. Zeng, “Air waveguide in a hybrid 1D and 2D photonic crystal hetero-structure,” J. Opt. Soc. Am. B 282, 4445-4448 (2009).
  9. W. Jiang and R. T. Chen, “Multichannel optical add-drop process in symmetrical waveguide-resonator systems,” Phys. Rev. Lett. 91, 213901 (2003). [CrossRef] [PubMed]
  10. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000). [CrossRef]
  11. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999). [CrossRef]
  12. R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, “Fabrication and characterization of hollow metal waveguides for optical interconnect applications,” Appl. Phys. A 95, 1059-1066 (2009). [CrossRef]
  13. H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799-1808 (2003). [CrossRef] [PubMed]
  14. C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakhir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005). [CrossRef]
  15. S. Boutami, B. B. Bakhir, H. T. Hattori, X. Letartre, J. L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-d photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835-837 (2006). [CrossRef]
  16. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 μm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004). [CrossRef]
  17. V. S. Amaratunga, H. Hattori, M. Premaratne, H. Tan, and C. Jagadish, “Directional optically pumped laterally coupled DFB lasers with circular mirrors,” J. Lightwave Technol. 27, 1425-1433 (2009). [CrossRef]
  18. A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423-1431 (1995). [CrossRef]
  19. J. Piprek, H. Wenzel, and G. Sztefka, “Modeling thermal effects on the light vs. current characteristic of gain-guided vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 6, 139-142 (1994). [CrossRef]
  20. B. Klein, L. F. Register, M. Grupen, and K. Hess, “Numerical simulation of vertical cavity surface emitting lasers,” Opt. Express 2, 163-168 (1998). [CrossRef] [PubMed]
  21. A. J. Lowery, P. C. R. Gurney, X. H. Wang, L. V. T. Nguyen, Y. C. Chan, and M. Premaratne, “Time-domain simulation of photonic devices, circuits and systems,” Proc. SPIE 2693, 624-635 (1996). [CrossRef]
  22. R. S. Tucker and D. J. Pope, “Microwave circuit models of semiconductor injection lasers,” IEEE Trans. Microwave Theory Tech. 31, 289-294 (1983). [CrossRef]
  23. M. Jungo, D. Erni, and W. Baechtold, “Alternative formulation of carrier transport in spatially-dependent laser rate equations,” Opt. Quantum Electron. 36, 881-891 (2004). [CrossRef]
  24. Y. Satuby and M. Orenstein, “Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers,” IEEE J. Quantum Electron. 35, 944-954 (1999). [CrossRef]
  25. R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587-596 (1996). [CrossRef]
  26. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Modeling the Flow of Light (Princeton U. Press, 1995).
  27. V. N. Astratov, I. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. D. L. Rue, “Resonant coupling of near-infrared radiation to photonic band structure waveguides,” J. Lightwave Technol. 17, 2050-2057 (1999). [CrossRef]
  28. S. Boutami, B. B. Bakir, P. Regreny, J. L. Leclercq, and P. Viktorovitch, “Compact 1.55 μm room-temperature optically pumped VCSEL using photonic crystal mirror,” Electron. Lett. 43, 282-283 (2007). [CrossRef]
  29. J. M. Pottage, E. Silvestre, and P. S. J. Russell, “Vertical-cavity surface emitting resonances in photonic crystals,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 442-447 (2001). [CrossRef] [PubMed]
  30. R. L. Dantec, T. Benyattou, G. Guillot, A. Spisser, J. L. Leclercq, P. Viktorovitch, D. Rondi, and R. Blondeau, “Tunable microcavity based on InP/air Bragg mirrors,” J. Mater. Sci. Mater. Electron. 10, 447-450 (1999). [CrossRef]
  31. S. Boutami, B. B. Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express 14, 3129-3137 (2006). [CrossRef] [PubMed]
  32. K. Streubel, S. Rapp, J. André, and N. Chitica, “Fabrication of InP/air-gap distributed Bragg reflectors and micro-cavities,” J. Mater. Sci. Eng. 44, 364-367 (1997). [CrossRef]
  33. S. S. Murtaza, R. V. Chelakara, R. D. Dupuis, J. C. Campbell, and A. G. Dentai, “Resonant-cavity photodiode operating at 1.55 μm with Burstein-shifted In0.53Ga0.47As/InP reflectors,” Appl. Phys. Lett. 69, 2462-2464 (1996). [CrossRef]
  34. “Fullwave 4.0 RSOFT design group,” http://www.rsoftdesign.com (1999).
  35. “Bandsolve 2.0 RSOFT design group,” http://www.rsoftdesign.com (1999).
  36. X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystals and MOEMS structures,” J. Lightwave Technol. 21, 1691-1699 (2003). [CrossRef]
  37. H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express 13, 3310-3322 (2005). [CrossRef] [PubMed]
  38. H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44, 3069-3076 (2005). [CrossRef] [PubMed]
  39. R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal laser,” Microw. Opt. Technol. Lett. 46, 210-214 (2005). [CrossRef]
  40. C. J. Matthews and R. Seviour, “Effects of disorder on the frequency and field of photonic-crystal cavity resonators,” Appl. Phys. B 94, 381-388 (2009). [CrossRef]
  41. M. Jungo, D. Erni, and W. Baechtold, “VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model,” IEEE J. Sel. Top. Quantum Electron. 9, 939-948 (2003). [CrossRef]
  42. G. Sialm, D. Lenz, D. Erni, G.-L. Bona, C. Kromer, M. Jungo, T. Morf, F. Ellinger, and H. Jackel, “Comparison of simulation and measurement of dynamic fiber-coupling effects for high-speed multimode VCSELs,” J. Lightwave Technol. 23, 2318-2330 (2005). [CrossRef]
  43. J. Y. Law, “Mode-partition noise in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 437-439 (1997). [CrossRef]
  44. J. Dellunde, A. Valle, L. Pesquera, and K. A. Shore, “Transverse-mode selection and noise properties of external-cavity vertical cavity surface-emitting lasers including multiple-reflection effects,” J. Opt. Soc. Am. B 16, 2131-2139 (1999). [CrossRef]
  45. S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139-2147 (1996). [CrossRef]
  46. C. Wilsen, H. Temkin, and L. A. Coldren, Vertical Cavity Surface-Emitting Lasers, 1st ed. (Cambridge Univ. Press, 1999).
  47. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, 1st ed. (Wiley, 1995).
  48. D. I. Babic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514-524 (1992). [CrossRef]
  49. S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers, 1st ed. (Wiley, 2003). [CrossRef]
  50. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford Univ. Press, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited