OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 1002–1010

Spectroscopic and energy transfer investigation of Nd Yb in Y 2 O 3 transparent ceramics

A. Lupei, V. Lupei, A. Ikesue, and C. Gheorghe  »View Author Affiliations

JOSA B, Vol. 27, Issue 5, pp. 1002-1010 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (761 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The Nd 3 + Yb 3 + energy transfer spectral characteristics in ( Nd , Yb ) : Y 2 O 3 ceramics and the relevant spectral and emission decay data on single-doped (especially temperature effects) and codoped samples are presented. The transfer efficiencies depend strongly on Yb 3 + content, attaining 98 % for Nd 1 at. % Yb 5 at. % at 300 K . The resonant Nd 3 + Yb 3 + energy transfer ( F 3 2 4 ( Nd ) , F 7 2 2 ( Yb ) ) ( I 9 2 4 ( Nd ) , F 5 2 2 ( Yb ) ) , involving Nd 3 + in C 2 sites and Yb 3 + in C 2 and C 3 i sites, is dominated by a dipole–dipole interaction with a microparameter C DA , Nd Yb 1 × 10 38 cm 6 s 1 at 300 K . The possibility of using this system for Nd-sensitized Yb 3 + laser emission from room-to-cryogenic temperatures is discussed.

© 2010 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.5690) Materials : Rare-earth-doped materials
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 23, 2009
Revised Manuscript: March 2, 2010
Manuscript Accepted: March 9, 2010
Published: April 26, 2010

, "Spectroscopic and energy transfer investigation of Nd∕Yb in Y2O3 transparent ceramics," J. Opt. Soc. Am. B 27, 1002-1010 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. E. Petersen and P. M. Bridenbaugh, “Application of resonance cooperation of rare earth ions Nd3+ and Yb3+ to lasers (Na0.5RE0.5WO4),” Appl. Phys. Lett. 4, 201–202 (1964). [CrossRef]
  2. U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd–Yb rezonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O laser material,” Phys. Rev. B 77, 075121 (2008). [CrossRef]
  3. Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+–Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009). [CrossRef]
  4. V. Reichel, K. Morl, S. Unger, S. Jetschke, J. Kirchoff, T. Sandrock, A. Harschak, A. Liem, J. Limpert, H. Zellmer, and A. Tunnermann, ”Fiber-laser power scaling beyond the 1-kilowatt by Nd:Yb co-doping,” Proc. SPIE 5777, 404–407 (2005). [CrossRef]
  5. N. Sugimoto, Y. Ohishi, Y. Katoh, A. Tate, M. Shimokozono, and S. Sudo, “A ytterbium- and neodymium co-doped yttrium aluminum garnet-buried channel waveguide laser pumped at 0.81 μm,” Appl. Phys. Lett. 67, 582–584 (1995). [CrossRef]
  6. V. Petit, P. Camy, J.-L. Doualan, and R. Moncorge, “Continuous-wave and tunable laser emission of Yb3+ in Nd:YbCaF2,” Appl. Phys. Lett. 88, 051111 (2006). [CrossRef]
  7. E. A. Khazanov and A. M. Sergeev, “Petawatt lasers based on optical parametric amplifiers: their state and prospects,” Physics-Uspekhi 51, 969–974 (2008). [CrossRef]
  8. A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of transparent Nd-doped HfO2–Y2O3 ceramics using HIP,” J. Am. Ceram. Soc. 79, 359–364 (1996). [CrossRef]
  9. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys., Part 2 40, L1277–L1279 (2001). [CrossRef]
  10. V. Lupei, A. Lupei, and A. Ikesue, “Transparent Nd and (Nd, Yb) -doped Sc2O3 ceramics as potential new laser materials,” Appl. Phys. Lett. 86, 111118 (2005). [CrossRef]
  11. V. Lupei, A. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Efficient sensitization of Yb3+ emission by Nd3+ in Y2O3 transparent ceramics and the prospect for high energy Yb lasers,” Opt. Lett. 34, 2141–2143 (2009). [CrossRef] [PubMed]
  12. N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, “Optical spectra, energy levels and crystal field analysis of tripositive rare earth ions in Y2O3. I Kramers ions in C2 sites,” J. Chem. Phys. 76, 3877–3889 (1982). [CrossRef]
  13. K. Petermann, G. Huber, L. Forsaniero, S. Kuch, E. Mix, V. Peters, and S. A. Basun, “Rare earth doped sesquioxides,” J. Lumin. 87, 973–975 (2000). [CrossRef]
  14. K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides crystal growth, spectroscopy and laser experiments,” Opt. Mater. 19, 67–71 (2002). [CrossRef]
  15. L. Laversenne, Y. Guyot, C. Goutaudier, M. T. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mater. 16, 475–483 (2001). [CrossRef]
  16. G. Boulon and V. Lupei, “Energy transfer and cooperative processes in Yb3+-doped cubic sesquioxide laser ceramics and crystals,” J. Lumin. 125, 45–54 (2007). [CrossRef]
  17. L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281, 5855–5861 (2008). [CrossRef]
  18. A. Lupei, V. Lupei, C. Presura, V. N. Enaki, and A. Petraru, “Electron-phonon coupling effects on Yb3+ spectra in several laser crystals,” J. Phys. Condens. Matter 11, 3769–3778 (1999). [CrossRef]
  19. A. Lupei, V. Lupei, V. N. Enaki, C. Presura, and A. Petraru, “Electron-photon coupling for heavy RE3+ ions in crystals,” Spectrochim. Acta 55, 773–781 (1999). [CrossRef]
  20. G. Schnaack and J. Konigstein, “Phonon and electronic Raman of cubic rare earth oxides and isomorphous yttrium oxide,” J. Opt. Soc. Am. 60, 1110–1115 (1970). [CrossRef]
  21. V. Peters, “Growth and spectroscopy of ytterbium-doped sesquioxides,” Dissertation thesis, (Universität Hamburg, 2001).
  22. A. Lupei, V. Lupei, T. Taira, Y. Sato, A. Ikesue, and C. Gheorghe, “Energy transfer processes of Nd in Y2O3 ceramic,” J. Lumin. 102/103, 72–76 (2003). [CrossRef]
  23. J. B. Gruber, D. K. Sardar, K. L. Nash, and R. M. Yow, “Comparative study of the crystal field splitting of trivalent neodymium energy levels in polycrystalline ceramic and nanocrystalline yttrium oxide,” J. Appl. Phys. 102, 023103 (2007). [CrossRef]
  24. B. M. Walsh, J. M. McMahon, W. C. Edwards, N. P. Barnes, R. W. Equal, and R. L. Hutchinson, “Spectroscopic characterization of Nd: Y2O3: application toward a differential absorption lidar system for remote sensing of ozone,” J. Opt. Soc. Am. B 19, 2893–2903 (2002). [CrossRef]
  25. S. N. Ushakov, M. A. Uslamina, and E. V. Zharikov, “Spectral properties of Nd3+ ions in samples of transparent Y2O3 ceramics,” Opt. Spectrosc. 106, 549–555 (2009). [CrossRef]
  26. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953). [CrossRef]
  27. G. G. Demirkhanyan, H. G. Demirkhanyan, E. P. Kokanyan, R. B. Kostanyan, J. B. Gruber, K. L. Nash, and D. K. Sardar, “Phonon effects on zero-phonon transitions between Stark Levels in NaBi(WO4)2: Yb,” J. Appl. Phys. 105, 063106 (2009). [CrossRef]
  28. G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on Ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008). [CrossRef]
  29. M. J. Weber, “Optical properties of Yb3+ and Nd3+–Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4, 3153–3159 (1971). [CrossRef]
  30. V. Lupei, A. Lupei, C. Gheorghe, A. Ikesue, and E. Osiac, “Energy transfer driven infrared emission processes in rare earth doped Sc2O3 ceramics,” J. Lumin. 129, 1862–1865 (2009). [CrossRef]
  31. A. I. Burnstein, “Jump mechanism of energy transfer,” Sov. Phys. JETP 35, 882–891 (1972).
  32. S. I. Golubov and Yu. V. Konobeev, “Procedure of averaging in the theory of resonance transfer of electron excitation energy,” Sov. Phys. Solid State 13, 2679–2682 (1972).
  33. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on the donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965). [CrossRef]
  34. V. Lupei, A. Lupei, S. Georgescu, B. Diaconescu, T. Taira, Y. Sato, S. Kurimura, and A. Ikesue, “High-resolution spectroscopy and emission decay in concentrated Nd: YAG ceramics,” J. Opt. Soc. Am. B 19, 360–368 (2002). [CrossRef]
  35. D. Jaque, M. O. Ramírez, L. E. Bausa, A. Speghini, M. Bettinelli, and E. Cavalli, “Influence of Nd and Yb concentration on the Nd→Yb energy transfer in the YAl3(BO3)4 nonlinear crystal: determination of optimum concentrations for laser applications,” J. Opt. Soc. Am. B 21, 1203–1209 (2004). [CrossRef]

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited