OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 1022–1030

Soliton dynamics in non-uniform fiber tapers: analytical description through an improved moment method

Zhigang Chen, Antoinette J. Taylor, and Anatoly Efimov  »View Author Affiliations


JOSA B, Vol. 27, Issue 5, pp. 1022-1030 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001022


View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop an improved moment method to model soliton propagation in optical fibers. We account for the full Raman gain spectrum of the material and derive a system of coupled differential equations describing the evolution of five moments of the pulse, valid for arbitrary soliton durations. By comparing with the numerical solution of the generalized nonlinear Schrödinger equation, the improved moment method is shown to accurately represent soliton self-frequency shift under complex dispersion, nonlinearity, and Raman gain spectra. Numerical examples are presented for a dispersion-shifted fused silica fiber and a non-uniform ZBLAN fluoride fiber taper. The latter demonstrates an enhanced soliton self-frequency shift through axial dispersion and nonlinearity engineering along the taper length.

© 2010 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 18, 2009
Revised Manuscript: March 9, 2010
Manuscript Accepted: March 12, 2010
Published: April 27, 2010

Citation
Zhigang Chen, Antoinette J. Taylor, and Anatoly Efimov, "Soliton dynamics in non-uniform fiber tapers: analytical description through an improved moment method," J. Opt. Soc. Am. B 27, 1022-1030 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-5-1022


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).
  2. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986). [CrossRef] [PubMed]
  3. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  4. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001). [CrossRef]
  5. N. Nishizawa, Y. Ito, and T. Goto, “0.78–0.90-μm wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber,” IEEE Photon. Technol. Lett. 14, 986–988 (2002). [CrossRef]
  6. H. Lim, J. Buckley, A. Chong, and F. W. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm,” Electron. Lett. 40, 1523–1525 (2004). [CrossRef]
  7. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  8. Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009). [CrossRef] [PubMed]
  9. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. Martijn de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009). [CrossRef]
  10. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986). [CrossRef] [PubMed]
  11. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993). [CrossRef] [PubMed]
  12. M. L. V. Tse, P. Horak, J. H. V. Price, F. Poletti, F. He, and D. J. Richardson, “Pulse compression at 1.06 μm in dispersion-decreasing holey fibers,” Opt. Lett. 31, 3504–3506 (2006). [CrossRef] [PubMed]
  13. S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633–1641 (1991). [CrossRef]
  14. J. N. Elgin, T. Brabec, and S. M. J. Kelly, “A perturbative theory of soliton propagation in the presence of third-order dispersion,” Opt. Commun. 114, 321–328 (1995). [CrossRef]
  15. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989). [CrossRef]
  16. C. Desem and P. L. Chu, “Effect of chirping on solution propagation in single-mode optical fibers,” Opt. Lett. 11, 248–250 (1986). [CrossRef] [PubMed]
  17. P. T. Dinda, A. Labruyère, and K. Nakkeeran, “Theory of Raman effect on solitons in optical fibre systems: impact and control processes for high-speed long-distance transmission lines,” Opt. Commun. 234, 137–151 (2004). [CrossRef]
  18. W. Hodel and H. P. Webber, “Decay of femtosecond higher-order solitons in an optical fiber induced by Raman self-pumping,” Opt. Lett. 12, 924–926 (1987). [CrossRef] [PubMed]
  19. J. Santhanam and G. P. Agrawal, “Raman-induced spectral shifts in optical fibers: general theory based on the moment method,” Opt. Commun. 222, 413–420 (2003). [CrossRef]
  20. E. N. Tsoy and C. M. de Sterke, “Dynamics of ultrashort pulses near zero dispersion wavelength,” J. Opt. Soc. Am. B 23, 2425–2433 (2006). [CrossRef]
  21. A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008). [CrossRef] [PubMed]
  22. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, 1992).
  23. B. Burgoyne, N. Godbout, and S. Lacroix, “Nonlinear pulse propagation in optical fibers using second order moments,” Opt. Express 15, 10075–10090 (2007). [CrossRef] [PubMed]
  24. A. Efimov, “Fundamental nonlinear-optical interactions in photonic fibers: time-spectral visualization,” Laser Phys. 18, 667–681 (2008). [CrossRef]
  25. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002). [CrossRef]
  26. W. L. Kath and N. F. Smyth, “Soliton evolution and radiation loss for the nonlinear Schrödinger equation,” Phys. Rev. E 51, 1484–1492 (1995). [CrossRef]
  27. J. P. Gordon, “Dispersive perturbations of solitons of the nonlinear Schrödinger equation,” J. Opt. Soc. Am. B 9, 91–97 (1992). [CrossRef]
  28. A. Saissy, J. Botineau, L. Macon, and G. Maze, “Raman scattering in a fluorozirconate glass optical fiber,” J. Phys. (France) Lett. 46, 289–294 (1985).
  29. J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express 15, 13203–13211 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited