OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 1065–1076

Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis  »View Author Affiliations


JOSA B, Vol. 27, Issue 5, pp. 1065-1076 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001065


View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied plasma formation and relaxation dynamics along with the corresponding topography modifications in fused silica and sapphire induced by single femtosecond laser pulses (800 nm and 120 fs). These materials, representative of high bandgap amorphous and crystalline dielectrics, respectively, require nonlinear mechanisms to absorb the laser light. The study employed a femtosecond time-resolved microscopy technique that allows obtaining reflectivity and transmission images of the material surface at well-defined temporal delays after the arrival of the pump pulse which excites the dielectric material. The transient evolution of the free-electron plasma formed can be followed by combining the time-resolved optical data with a Drude model to estimate transient electron densities and skin depths. The temporal evolution of the optical properties is very similar in both materials within the first few hundred picoseconds, including the formation of a high reflectivity ring at about 7 ps. In contrast, at longer delays (100 ps–20 ns) the behavior of both materials differs significantly, revealing a longer lasting ablation process in sapphire. Moreover, transient images of sapphire show a concentric ring pattern surrounding the ablation crater, which is not observed in fused silica. We attribute this phenomenon to optical diffraction at a transient elevation of the ejected molten material at the crater border. On the other hand, the final topography of the ablation crater is radically different for each material. While in fused silica a relatively smooth crater with two distinct regimes is observed, sapphire shows much steeper crater walls, surrounded by a weak depression along with cracks in the material surface. These differences are explained in terms of the most relevant thermal and mechanical properties of the material. Despite these differences the maximum crater depth is comparable in both material at the highest fluences used ( 16   J / cm 2 ) . The evolution of the crater depth as a function of fluence can be described taking into account the individual bandgap of each material.

© 2010 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(350.5400) Other areas of optics : Plasmas

ToC Category:
Ultrafast Optics

History
Original Manuscript: January 4, 2010
Revised Manuscript: March 5, 2010
Manuscript Accepted: March 16, 2010
Published: April 28, 2010

Citation
D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, "Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics," J. Opt. Soc. Am. B 27, 1065-1076 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-5-1065

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited