OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 1065–1076

Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis  »View Author Affiliations


JOSA B, Vol. 27, Issue 5, pp. 1065-1076 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001065


View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied plasma formation and relaxation dynamics along with the corresponding topography modifications in fused silica and sapphire induced by single femtosecond laser pulses (800 nm and 120 fs). These materials, representative of high bandgap amorphous and crystalline dielectrics, respectively, require nonlinear mechanisms to absorb the laser light. The study employed a femtosecond time-resolved microscopy technique that allows obtaining reflectivity and transmission images of the material surface at well-defined temporal delays after the arrival of the pump pulse which excites the dielectric material. The transient evolution of the free-electron plasma formed can be followed by combining the time-resolved optical data with a Drude model to estimate transient electron densities and skin depths. The temporal evolution of the optical properties is very similar in both materials within the first few hundred picoseconds, including the formation of a high reflectivity ring at about 7 ps. In contrast, at longer delays (100 ps–20 ns) the behavior of both materials differs significantly, revealing a longer lasting ablation process in sapphire. Moreover, transient images of sapphire show a concentric ring pattern surrounding the ablation crater, which is not observed in fused silica. We attribute this phenomenon to optical diffraction at a transient elevation of the ejected molten material at the crater border. On the other hand, the final topography of the ablation crater is radically different for each material. While in fused silica a relatively smooth crater with two distinct regimes is observed, sapphire shows much steeper crater walls, surrounded by a weak depression along with cracks in the material surface. These differences are explained in terms of the most relevant thermal and mechanical properties of the material. Despite these differences the maximum crater depth is comparable in both material at the highest fluences used ( 16   J / cm 2 ) . The evolution of the crater depth as a function of fluence can be described taking into account the individual bandgap of each material.

© 2010 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(350.5400) Other areas of optics : Plasmas

ToC Category:
Ultrafast Optics

History
Original Manuscript: January 4, 2010
Revised Manuscript: March 5, 2010
Manuscript Accepted: March 16, 2010
Published: April 28, 2010

Citation
D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, "Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics," J. Opt. Soc. Am. B 27, 1065-1076 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-5-1065


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004). [CrossRef] [PubMed]
  2. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16, 16265–16271 (2008). [CrossRef] [PubMed]
  3. R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci. 252, 8576–8579 (2006). [CrossRef]
  4. R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007). [CrossRef] [PubMed]
  5. M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys. A 76, 857–860 (2003). [CrossRef]
  6. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004). [CrossRef]
  7. F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006). [CrossRef]
  8. R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000). [CrossRef]
  9. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Theoretical investigations of material modification using temporally shaped femtosecond laser pulses,” Appl. Phys. A 81, 1639–1645 (2005). [CrossRef]
  10. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007). [CrossRef]
  11. D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008). [CrossRef]
  12. A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007). [CrossRef]
  13. I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A 81, 1627–1632 (2005). [CrossRef]
  14. J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74, 134106 (2006). [CrossRef]
  15. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998). [CrossRef]
  16. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, and D. von der Linde, “Dynamics of femtosecond laser induced ablation from solid surfaces,” Proc. SPIE 3343, 46–58 (1998). [CrossRef]
  17. D. von der Linde and H. Schueler, “Breakdown threshold and plasma formation in femtosecond laser-solid interaction,” J. Opt. Soc. Am. B 13, 216–222 (1996). [CrossRef]
  18. M. C. Downer, R. L. Fork, and C. V. Shank, “Femtosecond imaging of melting and evaporation at a photoexcited silicon surface,” J. Opt. Soc. Am. B 2, 595–599 (1985). [CrossRef]
  19. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond-laser-excited surfaces,” J. Opt. Soc. Am. B 23, 1954–1964 (2006). [CrossRef]
  20. H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293–294 (1996). [CrossRef]
  21. L. Sudrie, M. Franco, D. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 191, 333–339 (2001). [CrossRef]
  22. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by used of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650–660 (1997). [CrossRef]
  23. D. Puerto, W. Gawelda, J. Siegel, J. Solis, and J. Bonse, “Erratum: plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 92, 219901 (2008). [CrossRef]
  24. A. Rosenfeld, D. Ashkenasi, H. Varel, M. Wähmer, and E. E. B. Campbell, “Time resolved detection of particle removal from dielectrics on femtosecond laser ablation,” Appl. Surf. Sci. 127–129, 76–80 (1998). [CrossRef]
  25. S. W. Winkler, I. M. Burakov, R. Stoian, N. M. Bulgakova, A. Husakou, A. Mermillod-Blondin, A. Rosenfeld, D. Ashkenasi, and I. V. Hertel, “Transient response of dielectric materials exposed to ultrafast laser radiation,” Appl. Phys. A 84, 413–422 (2006). [CrossRef]
  26. J. K. R. Weber, S. Krishnan, C. D. Anderson, and P. C. Nordine, “Liquid silica is a dielectric and not a metal, and therefore only a small reflectivity increase with respect to the solid is expected upon liquefaction,” J. Am. Ceram. Soc. 78, 583–587 (1995). [CrossRef]
  27. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Contrib. Plasma Phys. 47, 360–367 (2007). [CrossRef]
  28. A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72, 085128 (2005). [CrossRef]
  29. M. Born and E. Wolf, Principle of Optics (Pergamon, 1980).
  30. C. Quoix, G. Hamoniaux, A. Antonetti, J.-C. Gauthier, J.-P. Geindre, and P. Audebert, “Ultrafast plasma studies by phase and amplitude measurements with femtosecond spectral interferometry,” J. Quant. Spectrosc. Radiat. Transf. 65, 455–462 (2000). [CrossRef]
  31. Different models to estimate the scattering times have been proposed in the literature. Whereas propose a fixed scattering time, establish a relation to the electronic density and the critical electron density. We have decided to follow the second approach.
  32. M. D. Feit, A. M. Komashko, and A. M. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys. A 79, 1657–1661 (2004). [CrossRef]
  33. R. F. Haglund and R. Kelly, “Electronic processes in sputtering by laser beams,” in Fundamental Processes in Sputtering of Atoms and Molecules (SPUT2), P.Sigmund, ed. (Royal Danish Academy of Sciences and Letters, 1993), pp. 527–592.
  34. G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study,” Nucl. Instrum. Methods Phys. Res. B 107, 97–101 (1996). [CrossRef]
  35. P. Audebert, P. Daguzan, A. D. Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Frastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990–1993 (1994). [CrossRef] [PubMed]
  36. F. Quéré, S. Guizard, P. Martin, G. Petite, O. Gobert, P. Meynadier, and M. Perdrix, “Ultrafast carrier dynamics in laser-excited materials: subpicosecond optical studies,” Appl. Phys. B 68, 459–463 (1999). [CrossRef]
  37. Q. Sun, H. Jiang, Y. Li, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica,” Opt. Lett. 30, 320–322 (2005). [CrossRef] [PubMed]
  38. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996). [CrossRef]
  39. S. Preuss, M. Späth, Y. Zhang, and M. Stuke, “Time resolved dynamics of subpicosecond laser ablation,” Appl. Phys. Lett. 62, 3049–3051 (1993). [CrossRef]
  40. T. Q. Jia, Z. Z. Xu, R. X. Li, H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004). [CrossRef]
  41. O. Uteza, B. Bussière, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Laser-induced damage threshold of sapphire in nanosecond, picosecond and femtosecond regimes,” Appl. Surf. Sci. 254, 799–803 (2007). [CrossRef]
  42. S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, “Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,” Appl. Surf. Sci. 186, 364–368 (2002). [CrossRef]
  43. D. R. Lide and H. V. Kehiaian, CRC Handbook of Thermophysical and Thermochemical Data (CRC, 1994).
  44. D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120, 65–80 (1997). [CrossRef]
  45. R. Wagner and J. Gottmann, “Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation,” J. Phys.: Conf. Ser. 59, 333–337 (2007). [CrossRef]
  46. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7, 196–198 (1982). [CrossRef] [PubMed]
  47. N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Förster, R. Sobierajski, R. Nietubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Düsterer, and H. Redlin, “Ablation of solids using a femtosecond extreme ultraviolet free electron laser,” Appl. Phys. Lett. 89, 241909 (2006). [CrossRef]
  48. G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46, 1061–1072 (1982). [CrossRef]
  49. G. Urbain, “Viscosite de l’alumine liquide,” Rev. Int. Hautes Temp. Refract. 19, 55–57 (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited