OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 1083–1091

Coupled magnetic dipole resonances in sub-wavelength dielectric particle clusters

Mark S. Wheeler, J. Stewart Aitchison, and Mohammad Mojahedi  »View Author Affiliations

JOSA B, Vol. 27, Issue 5, pp. 1083-1091 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (374 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dielectric spheres which are much smaller than a wavelength and made of a large permittivity can support magnetic dipole modes of great purity. We investigate the coupling of such magnetic dipoles by studying sub-wavelength dielectric spheres arranged in clusters as pairs, chains, and rings. The coupling among the spheres creates hybridized modes, which may be used to engineer metamaterials with more degrees of freedom than by using single particles. Two methods of analysis are used: an approximate coupled dipole model and an exact transition-matrix approach. An experimental setup employs a focused Gaussian beam excitation. The magnetic coupling presented here is similar to the coupling of plasmonic modes in metal nanoparticles. Therefore, these experimental results are also a verification of several analogous plasmonic systems.

© 2010 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: November 18, 2009
Revised Manuscript: February 12, 2010
Manuscript Accepted: March 12, 2010
Published: April 28, 2010

Mark S. Wheeler, J. Stewart Aitchison, and Mohammad Mojahedi, "Coupled magnetic dipole resonances in sub-wavelength dielectric particle clusters," J. Opt. Soc. Am. B 27, 1083-1091 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter 14, 4035–4044 (2002). [CrossRef]
  2. O. G. Vendik and M. S. Gashinova, “Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix,” in Proceedings of the 34th European Microwave Conference (IEEE, 2004), Vol. 3, pp. 1209–1212.
  3. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005). [CrossRef]
  4. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated non-magnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73, 045105 (2006). [CrossRef]
  5. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17, 3717–3734 (2005). [CrossRef] [PubMed]
  6. M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79, 073103 (2009). [CrossRef]
  7. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008). [CrossRef] [PubMed]
  8. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007). [CrossRef] [PubMed]
  9. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007). [CrossRef] [PubMed]
  10. A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express 14, 1557–1567 (2006). [CrossRef] [PubMed]
  11. A. Alù and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78, 085112 (2008). [CrossRef]
  12. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007). [CrossRef] [PubMed]
  13. W. Park and Q. Wu, “Negative effective permeability in metal cluster photonic crystal,” Solid State Commun. 146, 221–227 (2008). [CrossRef]
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  15. R.-L. Chern, X.-X. Liu, and C.-C. Chang, “Particle plasmons of metal nanospheres: application of multiple scattering approach,” Phys. Rev. E 76, 016609 (2007). [CrossRef]
  16. S. Riikonen, I. Romero, and F. J. García de Abajo, “Plasmon tunability in metallodielectric metamaterials,” Phys. Rev. B 71, 235104 (2005). [CrossRef]
  17. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007). [CrossRef]
  18. W.-Y. Chien and T. Szkopek, “Multiple-multipole simulation of optical nearfields in discrete metal nanosphere assemblies,” Opt. Express 16, 1820–1835 (2008). [CrossRef] [PubMed]
  19. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  20. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004). [CrossRef]
  21. K. H. Fung and C. T. Chan, “Analytical study of the plasmonic modes of a metal nanoparticle circular array,” Phys. Rev. B 77, 205423 (2008). [CrossRef]
  22. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971). [CrossRef]
  23. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, 2002).
  24. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995).
  25. B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field calculations in multiple-scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002). [CrossRef]
  26. J. Bruning and Y. Lo, “Multiple scattering of EM waves by spheres part I—Multipole expansion and ray-optical solutions,” IEEE Trans. Antennas Propag. 19, 378–390 (1971). [CrossRef]
  27. J. Bruning and Y. Lo, “Multiple scattering of EM waves by spheres part II—Numerical and experimental results,” IEEE Trans. Antennas Propag. 19, 391–400 (1971). [CrossRef]
  28. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996). [CrossRef]
  29. F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60, 6086–6102 (1999). [CrossRef]
  30. M. Quinten and U. Kreibig, “Absorption and elastic scattering of light by particle aggregates,” Appl. Opt. 32, 6173–6182 (1993). [CrossRef] [PubMed]
  31. B. Stout, J.-C. Auger, and A. Devilez, “Recursive T matrix algorithm for resonant multiple scattering: applications to localized plasmon excitations,” J. Opt. Soc. Am. A 25, 2549–2557 (2008). [CrossRef]
  32. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  33. V. A. Markel, “Antisymmetrical optical states,” J. Opt. Soc. Am. B 12, 1783–1791 (1995). [CrossRef]
  34. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).
  35. P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications (IEEE, 1998).
  36. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991). [CrossRef]
  37. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005). [CrossRef]
  38. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006). [CrossRef]
  39. L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley-Interscience, 2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited