OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 1099–1103

Position dependent splitting of bound states in periodic photonic lattices

Keya Zhou, Zhongyi Guo, and Shutian Liu  »View Author Affiliations


JOSA B, Vol. 27, Issue 5, pp. 1099-1103 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001099


View Full Text Article

Enhanced HTML    Acrobat PDF (287 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this article, we investigate the N-soliton bound state (BS) motions in photonic lattices. BSs split into their constituent single-solitons when they are incident normally into lattices. The splitting is sensitive to the incident position with respect to the lattices. In such a process, the lattice profile not only provides an antisymmetric frequency modulation perturbation and causes the BS to split but also acts as an external potential which affects the propagating dynamics of each single-soliton.

© 2010 Optical Society of America

OCIS Codes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 15, 2009
Revised Manuscript: March 11, 2010
Manuscript Accepted: March 16, 2010
Published: April 29, 2010

Citation
Keya Zhou, Zhongyi Guo, and Shutian Liu, "Position dependent splitting of bound states in periodic photonic lattices," J. Opt. Soc. Am. B 27, 1099-1103 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-5-1099


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of light (Princeton U. Press, 1995).
  2. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford U. Press, 1994).
  3. Y. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  4. G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  5. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–466 (1986). [CrossRef] [PubMed]
  6. M. Golles, I. M. Uzunov, and F. Lederer, “Break up of N-soliton bound states due to intrapulse Raman scattering and third-order dispersion—an eigenvalue analysis,” Phys. Lett. A 231, 195–200 (1997). [CrossRef]
  7. K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392–394 (1988). [CrossRef] [PubMed]
  8. V. V. Afanasyev, V. A. Vysloukh, and V. N. Serkin, “Decay and interaction of femtosecond optical solitons induced by the Raman self-scattering effect,” Opt. Lett. 15, 489–491 (1990). [CrossRef] [PubMed]
  9. Y. Silberberg, “Solitons and two-photon absorption,” Opt. Lett. 15, 1005–1007 (1990). [CrossRef] [PubMed]
  10. L. Torner, J. P. Torres, and C. R. Menyuk, “Fission and self-deflection of spatial solitons by cascading,” Opt. Lett. 21, 462–464 (1996). [CrossRef]
  11. S. R. Friberg and K. W. DeLong, “Breakup of bound higher-order solitons,” Opt. Lett. 17, 979–981 (1992). [CrossRef] [PubMed]
  12. A. V. Buryak and N. N. Akhmediev, “Internal friction between solitons in near-integrable systems,” Phys. Rev. E 50, 3126–3133 (1994). [CrossRef]
  13. D. Artigas, L. Torner, J. P. Torres, and N. N. Akhmediev, “Asymmetrical splitting of higher-order optical solitons induced by quintic nonlinearity,” Opt. Commun. 143, 322–328 (1997). [CrossRef]
  14. V. A. Aleshkevich, Y. V. Kartashov, A. S. Zelenina, V. A. Vysloukh, J. P. Torres, and L. Torner, “Eigenvalue control and switching by fission of multisoliton bound states in planar waveguides,” Opt. Lett. 29, 483–485 (2004). [CrossRef] [PubMed]
  15. J. E. Prilepsky and S. A. Derevyanko, “Breakup of a multisoliton state of the linearly damped nonlinear Schrödinger equation,” Phys. Rev. E 75, 036616 (2007). [CrossRef]
  16. Y. V. Kartashov, L. Carsovan, A. S. Zelenina, V. A. Vysloukh, A. S. Sampera, M. Lewenstein, and L. Torner, “Soliton eigenvalue control in optical lattices,” Phys. Rev. Lett. 93, 143902 (2004). [CrossRef] [PubMed]
  17. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton control in fading optical lattices,” Opt. Lett. 31, 2181–2183 (2006). [CrossRef] [PubMed]
  18. Y. V. Kartashov, A. S. Zelenina, L. Torner, and V. A. Vysloukh, “Spatial soliton switching in quasi-continuous optical arrays,” Opt. Lett. 29, 766–768 (2004). [CrossRef] [PubMed]
  19. R. Scharf and A. R. Bishop, “Length-scale competition for the one-dimensional Schrödinger equation with spatially periodic potentials,” Phys. Rev. E 47, 1375–1383 (1993). [CrossRef]
  20. D. Liang-Wei, J. Hong-Zhen, and W. Hui, “Oscillation of spatial solitons in a waveguide with a symmetrical refractive index profile,” Chin. Phys. 16, 3004–3008 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited