OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 876–882

Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source

Samuel T. Wong, Konstantin L. Vodopyanov, and Robert L. Byer  »View Author Affiliations


JOSA B, Vol. 27, Issue 5, pp. 876-882 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000876


View Full Text Article

Enhanced HTML    Acrobat PDF (571 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate, both theoretically and experimentally, spectral, temporal, and coherence properties of a degenerate synchronously pumped optical parametric oscillator (SPOPO) as a divide-by-2 subharmonic generator. Periodically poled lithium niobate was used as the nonlinear gain medium and 180 fs pulses from a mode-locked Ti:Sapphire laser as the pump. A regime of stable SPOPO operation at degeneracy was achieved, where the SPOPO longitudinal modes were phase-locked to the pump, even without active cavity-length stabilization. Phase locking was confirmed by interference measurements between the pump and the frequency-doubled optical parametric oscillator output, as well as by beat frequency measurements using an independent continuous-wave laser. We have found that the stability range of such a phase-locked state, with respect to external perturbations, increased with the pump power and decreased with the cavity Q at a constant number of times above threshold, in excellent agreement with our model based on coupled nonlinear wave equations. At degeneracy (around 1550 nm), the SPOPO produced 70 fs output pulses with the full width at half-maximum spectral width of 210 cm 1 , which manifests significant pulse compression and spectral broadening with respect to the pump laser.

© 2010 Optical Society of America

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 4, 2010
Revised Manuscript: February 25, 2010
Manuscript Accepted: February 25, 2010
Published: April 6, 2010

Citation
Samuel T. Wong, Konstantin L. Vodopyanov, and Robert L. Byer, "Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source," J. Opt. Soc. Am. B 27, 876-882 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-5-876


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233-237 (2002). [CrossRef] [PubMed]
  2. S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325-342 (2003). [CrossRef]
  3. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D'Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335-1337 (2008). [CrossRef] [PubMed]
  4. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: Application to human breath analysis,” Opt. Express 16, 2387-2397 (2008). [CrossRef] [PubMed]
  5. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542-1544 (2004). [CrossRef] [PubMed]
  6. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15, 16540-16545 (2007). [CrossRef] [PubMed]
  7. J. Mandon, G. Guelachvili, and N. Picque, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99-102 (2009). [CrossRef]
  8. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509-513 (2001). [CrossRef] [PubMed]
  9. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3, 381-387 (2007). [CrossRef]
  10. T. Plettner, R. L. Byer, E. Colby, B. Cowan, C. M. S. Sears, J. E. Spencer, and R. H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum,” Phys. Rev. Lett. 95, 134801 (2005). [CrossRef] [PubMed]
  11. C. M. S. Sears, E. Colby, R. J. England, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L. Byer, “Phase stable net acceleration of electrons from a two-stage optical accelerator,” Phys. Rev. Lett. 11, 101301 (2008).
  12. B. M. Cowan, “Three-dimensional dielectric photonic crystal structures for laser-driven acceleration,” Phys. Rev. ST Accel. Beams 11, 011301 (2008). [CrossRef]
  13. I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “Self-starting Kerr-mode-locked polycrystalline Cr2+:ZnSe laser,” in The CLEO/QELS Conference (Optical Society of America, 2008), paper CF13.
  14. C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91-93 (2006). [CrossRef]
  15. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Midinfrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553-2555 (2006). [CrossRef] [PubMed]
  16. J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33, 285-287 (2008). [CrossRef] [PubMed]
  17. C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478-2480 (2007). [CrossRef] [PubMed]
  18. A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907-2909 (1995). [CrossRef]
  19. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm,” J. Opt. Soc. Am. B 17, 2086-2094 (2000). [CrossRef]
  20. S. M. Foreman, D. J. Jones, and J. Ye, “Flexible and rapidly configurable femtosecond pulse generation in the mid-IR,” Opt. Lett. 28, 370-372 (2003). [CrossRef] [PubMed]
  21. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source,” Opt. Lett. 32, 1138-1140 (2007). [CrossRef] [PubMed]
  22. A. Gambetta, R. Ramponi, and M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett. 33, 2671-2673 (2008). [CrossRef] [PubMed]
  23. P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, “Absolute frequency measurement of molecular transitions by a direct link to a comb generated around 3-μm,” Opt. Express 16, 8242-8249 (2008). [CrossRef] [PubMed]
  24. J. H. Sun, B. J. S. Gale, and D. T. Reid, “Composite frequency comb spanning 0.4-2.4 μm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator,” Opt. Lett. 32, 1414-1416 (2007). [CrossRef] [PubMed]
  25. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 μm,” Opt. Lett. 34, 1330-1332 (2009). [CrossRef] [PubMed]
  26. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. De Silvestri, and G. Cerullo, “Generation of broadband mid-infrared pulses from an optical parametric amplifier,” Opt. Express 15, 15035-15040 (2007). [CrossRef] [PubMed]
  27. C. D. Nabors, S. T. Yang, T. Day, and R. L. Byer, “Coherence properties of a doubly-resonant monolithic optical parametric oscillator,” J. Opt. Soc. Am. B 7, 815-820 (1990). [CrossRef]
  28. N. C. Wong, “Optical frequency division using an optical parametric oscillator,” Opt. Lett. 15, 1129-1131 (1990). [CrossRef] [PubMed]
  29. E. J. Mason and N. C. Wong, “Observation of two distinct phase states in a self-phase-locked type II phase-matched optical parametric oscillator,” Opt. Lett. 23, 1733-1735 (1998). [CrossRef]
  30. C. Fabre, E. J. Mason, and N. C. Wong, “Theoretical analysis of self-phase-locking in a type II phase-matched optical parametric oscillator,” Opt. Commun. 170, 299-307 (1999). [CrossRef]
  31. P. Groβ and K. J. Boller, “Stability analysis of the self-phase-locked divide-by-2 optical parametric oscillator,” Phys. Rev. A 71, 033801 (2005). [CrossRef]
  32. P. Groβ, K. J. Boller, and M. E. Klein, “High-precision wavelength-flexible frequency division for metrology,” Phys. Rev. A 71, 043824 (2005). [CrossRef]
  33. G. Kalmani, A. Arie, P. Blau, S. Pearl, and A. V. Smith, “Polarization-mixing optical parametric oscillator,” Opt. Lett. 30, 2146-2148 (2005). [CrossRef] [PubMed]
  34. D. H. Lee, M. E. Klein, J. P. Meyn, P. Groβ, R. Wallenstein, and K. J. Boller, “Self-injection-locking of a CW-OPO by intracavity frequency-doubling the idler wave,” Opt. Express 5, 114-119 (1999). [CrossRef] [PubMed]
  35. J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. Le Berre, “Theory of self-phase-locked optical parametric oscillator,” Phys. Rev. A 63, 023814 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited