OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 888–894

Visibility of inverted domain structures using the second harmonic generation microscope: Comparison of interference and non-interference cases

Junichi Kaneshiro, Yoshiaki Uesu, and Tatsuo Fukui  »View Author Affiliations

JOSA B, Vol. 27, Issue 5, pp. 888-894 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (570 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The visibility of inverted domain structures using the second harmonic generation (SHG) microscope is discussed based upon the three-wave coupling equations. Without reference second harmonic (SH) waves (non-interference case), the SHG intensity at a domain boundary decreases steeply along the perpendicular direction to the domain wall, which is observed as a dark line. Thus the non-interference SHG microscope reveals the location of domain boundaries but not the domain polarity which the SHG interference microscope can do. In the case of periodically poled domain structures, the clear observation criterion is expressed with the wave-number offset between the fundamental and SH waves.

© 2010 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.3730) Materials : Lithium niobate
(180.0180) Microscopy : Microscopy
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Nonlinear Optics

Original Manuscript: November 18, 2009
Manuscript Accepted: February 26, 2010
Published: April 6, 2010

Junichi Kaneshiro, Yoshiaki Uesu, and Tatsuo Fukui, "Visibility of inverted domain structures using the second harmonic generation microscope: Comparison of interference and non-interference cases," J. Opt. Soc. Am. B 27, 888-894 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169-171 (1966). [CrossRef]
  2. S. Arahira and Y. Uesu, “Optical second-harmonic generation in ferroelectric dicalcium lead propionate,” J. Phys. Soc. Jpn. 60, 2461-2469 (1991). [CrossRef]
  3. E. D. Mishina, T. V. Misuryaev, N. E. Sherstyuk, V. V. Lemanov, A. I. Morozov, A. S. Sigov, and Th. Rasing, “Observation of a near-surface structural phase transition in SrTiO3 by optical second harmonic generation,” Phys. Rev. Lett. 85, 3664-3667 (2000). [CrossRef] [PubMed]
  4. H. Yokota, T. Oyama, and Y. Uesu, “Second-harmonic-generation microscopic observations of polar state in Li-doped KTaO3 under an electric field,” Phys. Rev. B 72, 144103 (2005). [CrossRef]
  5. H. Yokota, Y. Uesu, C. Malibert, and J. M. Kiat, “Second-harmonic generation and x-ray diffraction studies of the pretransitional region and polar phase in relaxor K1−xLixTaO3,” Phys. Rev. B 75, 184113 (2007). [CrossRef]
  6. S. W. Liu, J. Chakhalian, M. Xiao, and C. L. Chen, “Second harmonic generation and ferroelectric phase transitions in thick and ultrathin Pb0.35Sr0.65TiO3 films on (001) MgO substrates,” Appl. Phys. Lett. 90, 042901 (2007). [CrossRef]
  7. U. Pustogowa, T. A. Luce, W. Hübner, and K. H. Bennemann, “Theory of nonlinear magneto-optics (invited),” J. Appl. Phys. 79, 6177-6180 (1996). [CrossRef]
  8. N. Ogawa, T. Satoh, Y. Ogimoto, and K. Miyano, “Nonlinear optical detection of a ferromagnetic state at the single interface of an antiferromagnetic LaMnO3/SrMnO3 double layer,” Phys. Rev. B 78, 212409 (2008). [CrossRef]
  9. M. Fiebig, Th. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature 419, 818-820 (2002). [CrossRef] [PubMed]
  10. M. Fiebig, V. V. Pavlov, and R. V. Pisarev, “Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review,” J. Opt. Soc. Am. B 22, 96-118 (2005). [CrossRef]
  11. M. Fiebig, “Magnetoelectric phase control in multiferroic manganites,” Phase Transit. 79, 947-956 (2006). [CrossRef]
  12. B. B. Van Aken, J. P. Rivera, H. Schmid, and M. Fiebig, “Observation of ferrotoroidic domains,” Nature 449, 702-705 (2007). [CrossRef] [PubMed]
  13. Y. Uesu, K. Yamane, and B. A. Strukov, “Optical second-harmonic generation of ammonium fluoroberyllate crystal in the incommensurate and ferroelectric phases,” Jpn. J. Appl. Phys. 28, 453-456 (1989). [CrossRef]
  14. W. Kleemann and J. Dec, “Comment on 'Critical behavior of ferroelectric SrTi18O3,” Phys. Rev. B 75, 027101 (2007). [CrossRef]
  15. Y. Uesu, S. Kurimura, and Y. Yamamoto, “Optical second harmonic images of 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165-2167 (1995). [CrossRef]
  16. S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domains in quasi-phase matched wavelength converters,” J. Appl. Phys. 81, 369-375 (1997). [CrossRef]
  17. Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. T. McKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, “Phase transitions and domain structures in strained pseudo cubic (100) SrTiO3 thin films,” Phys. Rev. B 73, 184112 (2006). [CrossRef]
  18. S. W. Liu, S. Jolly, M. Xiao, Z. Yuan, J. Liu, and C. L. Chen, “Domain microstructures and ferroelectric phase transition in Pb0.35Sr0.65TiO3 films studied by second harmonic generation in reflection geometry,” J. Appl. Phys. 101, 104118 (2007). [CrossRef]
  19. A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in the domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85, 375-377 (2004). [CrossRef]
  20. S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814-1816 (1998). [CrossRef]
  21. F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTiOPO4 waveguides,” J. Appl. Phys. 71, 4664-4670 (1992). [CrossRef]
  22. Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics 304, 99-103 (2004). [CrossRef]
  23. C. Canalias, V. Pasiskevicius, F. Laurell, S. Grilli, P. Ferraro, and P. D. Natale, “In situ visualization of domain kinetics in flux grown KTiOPO4 by digital holography,” J. Appl. Phys. 102, 064105 (2007). [CrossRef]
  24. S. J. Holmgren, V. Pasiskevicius, S. Wang, and F. Laurell, “Three-dimensional characterization of the effective second-order nonlinearity in periodically poled crystals,” Opt. Lett. 28, 1555-1557 (2003). [CrossRef] [PubMed]
  25. Y. Uesu, H. Yokota, S. Kawado, J. Kaneshiro, S. Kurimura, and N. Kato, “Three-dimensional observations of periodically poled domains in a LiTaO3 quasiphase matching crystal by second harmonic generation tomography,” Appl. Phys. Lett. 91, 182904 (2007). [CrossRef]
  26. J. Kaneshiro, H. Yokota, S. Kawado, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second-harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008). [CrossRef]
  27. J. Kaneshiro, Y. Uesu, and T. Fukui, “Three-dimensional observations of LiNbO3 and LiTaO3 quasi-phase matching devices using transmission-type scanning second-harmonic generation interference microscope,” Jpn. J. Appl. Phys. 48, 09KF09 (2009). [CrossRef]
  28. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3639 (1968). [CrossRef]
  29. M. Flörsheimer, R. Paschotta, U. Kubitscheck, Ch. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593-599 (1998). [CrossRef]
  30. A. Rosenfeldt and M. Flörsheimer, “Nondestructive remote imaging of ferroelectric domain distributions with high three-dimensional resolution,” Appl. Phys. B 73, 523-529 (2001). [CrossRef]
  31. J. Harris, G. Norris, and G. McConnell, “Characterization of periodically poled materials using nonlinear microscopy,” Opt. Express 16, 5667-5672 (2008). [CrossRef] [PubMed]
  32. R. C. Miller, “Optical harmonic generation in single crystal BaTiO3,” Phys. Rev. 134, A1313-A1319 (1964). [CrossRef]
  33. J. Jerphagnon, “Invariants of the third-rank Cartesian tensor: optical nonlinear susceptibilities,” Phys. Rev. B 2, 1091-1098 (1970). [CrossRef]
  34. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited