OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 904–908

Optimization of supercontinuum generation in air–silica nanowires

Hua Lu, Xueming Liu, Yongkang Gong, Xiaohong Hu, and Xiaohui Li  »View Author Affiliations


JOSA B, Vol. 27, Issue 5, pp. 904-908 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000904


View Full Text Article

Enhanced HTML    Acrobat PDF (323 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An effective hybrid genetic algorithm (GA) for optimizing air–silica nanowires, the incident pulse, and supercontinuum (SC) generation, is proposed in this paper. Based on the proposed algorithm, the dispersion and nonlinearity of air–silica nanowires, as well as the duration and chirp of incident pulses, are optimized to achieve SC generation with a broader, smoother, and more intense spectrum. It is found that the optimized spectrum becomes smoother from 740 to 1500 nm and is broadened by 300 nm . Meanwhile, the spectral intensity in the range of 450 945 nm is significantly increased by a factor of 10.

© 2010 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(150.1135) Machine vision : Algorithms
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 6, 2010
Revised Manuscript: February 26, 2010
Manuscript Accepted: February 26, 2010
Published: April 14, 2010

Citation
Hua Lu, Xueming Liu, Yongkang Gong, Xiaohong Hu, and Xiaohui Li, "Optimization of supercontinuum generation in air–silica nanowires," J. Opt. Soc. Am. B 27, 904-908 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-5-904


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000to7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970). [CrossRef]
  2. R. R. Alfano and S. L. Shapiro, “Observation of self phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970). [CrossRef]
  3. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1185 (2006). [CrossRef]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000). [CrossRef]
  6. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef] [PubMed]
  7. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001), 49.8.
  8. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004). [CrossRef] [PubMed]
  9. R. A. Dane, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14, 11997–12007 (2006). [CrossRef]
  10. A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182 (2002). [CrossRef]
  11. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003). [CrossRef] [PubMed]
  12. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of high-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002). [CrossRef] [PubMed]
  13. K. M. Hilligsøe, H. N. Paulsen, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Initial steps of supercontinuum generation in photonic crystal fibers,” J. Opt. Soc. Am. B 20, 1887–1893 (2003). [CrossRef]
  14. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001). [CrossRef] [PubMed]
  15. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984). [CrossRef]
  16. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air–silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001). [CrossRef]
  17. F. Luan, J. Knight, P. Russell, S. Campbell, D. Xiao, D. Reid, B. Mangan, D. Williams, and P. Roberts, “Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004). [CrossRef] [PubMed]
  18. J. Dudley and S. Coen, “Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber,” Opt. Express 12, 2423–2428 (2004). [CrossRef] [PubMed]
  19. Z. M. Zhu and T. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express 12, 791–796 (2004). [CrossRef] [PubMed]
  20. G. Q. Chang, T. B. Norris, and H. G. Winful, “Optimization of supercontinuum generation in photonic crystal fibers for pulse compression,” Opt. Lett. 28, 546–548 (2003). [CrossRef] [PubMed]
  21. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef] [PubMed]
  22. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16, 1300–1320 (2008). [CrossRef] [PubMed]
  23. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2870 (2004). [CrossRef] [PubMed]
  24. M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005). [CrossRef]
  25. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]
  26. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001). [CrossRef]
  27. X. Liu and B. Lee, “A fast method for nonlinear Schrödinger equation,” IEEE Photonics Technol. Lett. 15, 1549–1551 (2003). [CrossRef]
  28. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002). [CrossRef]
  29. S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983). [CrossRef] [PubMed]
  30. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).
  31. R. Chelouah and P. Siarry, “A continuous genetic algorithm designed for the global optimization of multimodal functions,” J. Heuristics 6, 191–213 (2000). [CrossRef]
  32. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004). [CrossRef] [PubMed]
  33. J. Y. Lou, L. M. Tong, and Z. Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Opt. Express 14, 6993–6998 (2006). [CrossRef] [PubMed]
  34. M. Foster, K. Moll, and A. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880–2887 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited