OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 914–919

Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors

Thomas Legero, Thomas Kessler, and Uwe Sterr  »View Author Affiliations

JOSA B, Vol. 27, Issue 5, pp. 914-919 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (225 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the thermal expansion of low thermal noise Fabry–Pérot cavities made of low thermal expansion (LTE) glass spacers and fused silica (FS) mirrors. The different thermal expansion of mirror and spacer deforms the mirror. This deformation strongly contributes to the cavity’s effective coefficient of thermal expansion (CTE), decreasing the zero crossing temperature by about 20 K compared to an all-LTE glass cavity. Finite element simulations and CTE measurements show that LTE rings optically contacted to the back surface of the FS mirrors allow to tune the zero crossing temperature over a range of 30 K .

© 2010 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(160.2750) Materials : Glass and other amorphous materials
(230.5750) Optical devices : Resonators
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: February 10, 2010
Manuscript Accepted: February 25, 2010
Published: April 14, 2010

Thomas Legero, Thomas Kessler, and Uwe Sterr, "Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors," J. Opt. Soc. Am. B 27, 914-919 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008). [CrossRef] [PubMed]
  2. A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. L. Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at 1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008). [CrossRef] [PubMed]
  3. A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 667–669 (2005). [CrossRef] [PubMed]
  4. J. Millo, M. Abgrall, M. Lours, E. English, H. Jiang, J. Guéna, A. Clairon, S. Bize, Y. L. Coq, G. Santarelli, and M. Tobar, “Ultra-low noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Opt. Lett. 34, 3707–3709 (2009). [CrossRef] [PubMed]
  5. B. Lipphardt, G. Grosche, U. Sterr, C. Tamm, S. Weyers, and H. Schnatz, “The stability of an optical clock laser transferred to the interrogation oscillator for a Cs fountain,” IEEE Trans. Instrum. Meas. 58, 1258–1262 (2009). [CrossRef]
  6. P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25, 1284–1293 (2008). [CrossRef]
  7. H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Transfer of an optical frequency over an urban fiber link,” J. Opt. Soc. Am. B 25, 2029–2035 (2008). [CrossRef]
  8. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999). [CrossRef]
  9. H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, “Diode laser with 1 Hz linewidth,” Opt. Lett. 31, 736–738 (2006). [CrossRef] [PubMed]
  10. M. Notcutt, L.-S. Ma, A. D. Ludlow, S. M. Foreman, J. Ye, and J. L. Hall, “Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers,” Phys. Rev. A 73, 031804 (2006). [CrossRef]
  11. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15,” Opt. Lett. 32, 641–643 (2007). [CrossRef] [PubMed]
  12. S. A. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. Gill, “Thermal-noise-limited optical cavity,” Phys. Rev. A 77, 033847 (2008). [CrossRef]
  13. P. Dubé, A. Madej, J. Bernard, L. Marmet, and A. Shiner, “A narrow linewidth and frequency-stable probe laser source for the Sr+88 single ion optical frequency standard,” Appl. Phys. B: Photophys. Laser Chem. 95, 43–54 (2009). [CrossRef]
  14. K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004). [CrossRef]
  15. Use of tradenames is for informational purpose only.
  16. M. Notcutt, L.-S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30, 1815–1817 (2005). [CrossRef] [PubMed]
  17. T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B: Photophys. Laser Chem. 83, 531–536 (2006). [CrossRef]
  18. S. A. Webster, M. Oxborrow, and P. Gill, “Vibration insensitive optical cavity,” Phys. Rev. A 75, 011801(R) (2007). [CrossRef]
  19. J. Millo, D. V. Magalhães, C. Mandache, Y. L. Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A 79, 053829 (2009). [CrossRef]
  20. J. W. Berthold III and S. F. Jacobs, “Ultraprecise thermal expansion measurements of seven low expansion materials,” Appl. Opt. 15, 2344–2347 (1976). [CrossRef]
  21. M. Notcutt, C. T. Taylor, A. G. Mann, and D. G. Blair, “Temperature compensation for cryogenic cavity stabilized lasers,” J. Phys. D: Appl. Phys. 28, 1807–1810 (1995). [CrossRef]
  22. E. K. Wong, M. Notcutt, C. T. Taylor, A. G. Mann, and D. G. Blair, “Temperature-compensated cryogenic Fabry–Perot cavity,” Appl. Opt. 36, 8563–8566 (1997). [CrossRef]
  23. R. W. Fox, “Fabry-Perot temperature dependence and surface-mounted optical cavities,” Proc. SPIE 7099, 70991R, (2008). [CrossRef]
  24. T. Legero and U. Sterr, “Spiegelbauteil für einen optischen Resonator,” German patent DE 10 2008 049 367 B3 (2008).
  25. F. Riehle, “Use of optical frequency standards for measurements of dimensional stability,” Meas. Sci. Technol. 9, 1042–1048 (1998). [CrossRef]
  26. J. W. Berthold III, S. F. Jacobs, and M. A. Norton, “Dimensional stability of fused silica, invar, and several ultra-low thermal expansion material,” Metrologia 13, 9–16 (1977). [CrossRef]
  27. Y. Levin, “Internal thermal noise in the LIGO test masses: A direct approach,” Phys. Rev. D 57, 659–663 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited