OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 920–926

Optical absorption in a finite three-dimensional photonic crystal thin film solar cell

Chan Hoe Yip, Yet-Ming Chiang, and Chee Cheong Wong  »View Author Affiliations


JOSA B, Vol. 27, Issue 5, pp. 920-926 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000920


View Full Text Article

Enhanced HTML    Acrobat PDF (600 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the increase in optical absorption in a finite three-dimensional photonic crystal through the dependence of the crystal film’s thickness. Varying thicknesses of TiO 2 inverse opal electrodes were assembled in dye-sensitized solar cells and their optical properties were characterized. Through measuring the enhancement in the incident photon-to-electricity conversion efficiency over the reference cell, we show that optical absorption of a photosensitive dye coupled to a finite ordered structure can be influenced by the spatial properties of the structure. This report provides an insight into the changes in optical absorption of an atom when the space surrounding that atom is modified.

© 2010 Optical Society of America

OCIS Codes
(310.6860) Thin films : Thin films, optical properties
(350.6050) Other areas of optics : Solar energy
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: January 29, 2010
Revised Manuscript: March 23, 2010
Manuscript Accepted: March 24, 2010
Published: April 14, 2010

Citation
Chan Hoe Yip, Yet-Ming Chiang, and Chee Cheong Wong, "Optical absorption in a finite three-dimensional photonic crystal thin film solar cell," J. Opt. Soc. Am. B 27, 920-926 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-5-920


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982). [CrossRef]
  2. M. Ghebrebrhan, P. Bermel, Y. Avniel, J. D. Joannopoulos, and S. G. Johnson, “Global optimization of silicon photovoltaic cell front coatings,” Opt. Express 17, 7505–7518 (2009). [CrossRef] [PubMed]
  3. C. Heine and R. H. Morf, “Submicrometer gratings for solar-energy applications,” Appl. Opt. 34, 2476–2482 (1995). [CrossRef] [PubMed]
  4. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A 78, 023825 (2008). [CrossRef]
  5. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  6. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Lett. Rev. 58, 2486–2489 (1987). [CrossRef]
  7. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006). [CrossRef]
  8. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998). [CrossRef]
  9. G. D’Aguanno, N. Mattiucci, M. Scalora, M. J. Bloemer, and A. M. Zheltikov, “Density of modes and tunneling times in finite one-dimensional photonic crystals: A comprehensive analysis,” Phys. Rev. E 70, 016612 (2004). [CrossRef]
  10. Y. A. Vlasov, S. Petit, G. Klein, B. Honerlage, and C. Hirlimann, “Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal,” Phys. Rev. E 60, 1030–1035 (1999). [CrossRef]
  11. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538–1541 (2003). [CrossRef]
  12. D. Duché, L. Escoubas, J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008). [CrossRef]
  13. M. Galli, D. Bajoni, F. Marabelli, L. C. Andreani, L. Pavesi, and G. Pucker, “Photonic bands and group-velocity dispersion in Si/SiO2 photonic crystals from white-light interferometry,” Phys. Rev. B 69, 115107 (2004). [CrossRef]
  14. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band-edge laser—a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994). [CrossRef]
  15. B. O’Regan and M. Gratzel, “A low-cost, high efficiency solar-cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991). [CrossRef]
  16. M. Gratzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorg. Chem. 44, 6841–6851 (2005). [CrossRef] [PubMed]
  17. S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125, 6306–6310 (2003). [CrossRef] [PubMed]
  18. A. Mihi and H. Miguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109, 15968–15976 (2005). [CrossRef]
  19. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008). [CrossRef]
  20. C. H. Yip, Y. M. Chiang, and C. C. Wong, “Dielectric band edge enhancement of energy conversion efficiency in photonic crystal dye-sensitized solar cell,” J. Phys. Chem. C 112, 8735–8740 (2008). [CrossRef]
  21. J. Chen, G. Von Freymann, S. Y. Choi, V. Kitaev, and G. A. Ozin, “Amplified photochemistry with slow photons,” Adv. Mater. 18, 1915–1919 (2006). [CrossRef]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2000).
  23. I. Piirma, Emulsion Polymerization (Academic, 1982).
  24. X. Zhou and X. S. Zhao, “Flow-controlled vertical deposition method for the fabrication of photonic crystals,” Langmuir 20, 1524–1526 (2004). [CrossRef]
  25. J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martinez, and C. Lopez, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003). [CrossRef]
  26. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  27. S. Nishimura, A. Shishido, N. Abrams, and T. E. Mallouk, “Fabrication technique for filling-factor tunable titanium dioxide colloidal crystal replicas,” Appl. Phys. Lett. 81, 4532–4534 (2002). [CrossRef]
  28. Y. J. Lee and P. V. Braun, “Tunable inverse opal hydrogel pH sensors,” Adv. Mater. 15, 563–566 (2003). [CrossRef]
  29. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004). [CrossRef] [PubMed]
  30. R. Wang, X. H. Wang, B. Y. Gu, and G. Z. Yang, “Local density of states in three-dimensional photonic crystals: calculation and enhancement effects,” Phys. Rev. B 67, 155114 (2003). [CrossRef]
  31. R. Wang and S. John, “Engineering the electromagnetic vacuum for controlling light with light in a photonic-band-gap microchip,” Phys. Rev. A 70, 043805 (2004). [CrossRef]
  32. S. G. Johnson, Massachusetts Institute of Technology, Cambridge, Mass. (personal communication, 2008); online MEEP-DISCUSS forum at http://ab-initio.mit.edu/meep.
  33. G. D’Aguanno, N. Mattiucci, M. Centini, M. Scalora, and M. J. Bloemer, “Electromagnetic density of modes for a finite-size three-dimensional structure,” Phys. Rev. E 69, 057601 (2004). [CrossRef]
  34. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  35. A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C 112, 13–17 (2008). [CrossRef]
  36. S. H. A. Lee, N. M. Abrams, P. G. Hoertz, G. D. Barber, L. I. Halaoui, and T. E. Mallouk, “Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells,” J. Phys. Chem. B 112, 14415–14421 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited