OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 948–955

Experimental generation and dynamical reconfiguration of different circular optical lattices for applications in atom trapping

I. Ricardez-Vargas and K. Volke-Sepúlveda  »View Author Affiliations

JOSA B, Vol. 27, Issue 5, pp. 948-955 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (541 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Different configurations of optical lattices with circular cylindrical geometry have been recently studied in the context of atom trapping from a theoretical viewpoint, giving rise to a number of proposed applications. A common problem for testing theoretical predictions is the difficulty in the experimental realization of some of the necessary optical potentials. Here we discuss the experimental generation of four different circular optical lattices in an efficient and simple way using a single spatial light modulator. Our approach allows switching between different light configurations with a time resolution given by the response time of the light modulator.

© 2010 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(140.3300) Lasers and laser optics : Laser beam shaping
(230.6120) Optical devices : Spatial light modulators
(260.3160) Physical optics : Interference

ToC Category:
Atomic and Molecular Physics

Original Manuscript: December 16, 2009
Revised Manuscript: March 3, 2010
Manuscript Accepted: March 3, 2010
Published: April 20, 2010

I. Ricardez-Vargas and K. Volke-Sepúlveda, "Experimental generation and dynamical reconfiguration of different circular optical lattices for applications in atom trapping," J. Opt. Soc. Am. B 27, 948-955 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Miller, R. A. Cline, and D. J. Heinzen, “Far-off-resonance optical trapping of atoms,” Phys. Rev. A 47, R4567–R4570 (1993). [CrossRef] [PubMed]
  2. P. S. Jessen and I. H. Deutsch, “Optical lattices,” Adv. At., Mol., Opt. Phys. 37, 95–139 (1996).
  3. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060–1063 (1999). [CrossRef]
  4. L. Amico, A. Osterloh, and F. Cataliotti, “Quantum many particle systems in ring-shaped optical lattices,” Phys. Rev. Lett. 95, 063201 (2005). [CrossRef] [PubMed]
  5. B. M. Peden, R. Bhat, M. Kramer, and M. J. Holland, “Quasi-angular momentum of Bose and Fermi gases in rotating optical lattices,” J. Phys. B 40, 3725–3744 (2007). [CrossRef]
  6. T. Wang and S. F. Yelin, “Fast mode of rotated atoms in one-dimensional lattice rings,” Phys. Rev. A 76, 033619 (2007). [CrossRef]
  7. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  8. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  9. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef] [PubMed]
  10. K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B: Quantum Semiclassical Opt. 4, S82–S88 (2002). [CrossRef]
  11. J. W. R. Tabosa and D. V. Petrov, “Optical pumping of orbital angular momentum of light in cold cesium atoms,” Phys. Rev. Lett. 83, 4967–4970 (1999). [CrossRef]
  12. M. F. Andersen, C. Ryu, P. Clade, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006). [CrossRef] [PubMed]
  13. C. Ryu, M. F. Andersen, P. Clade, V. Natarajan, K. Helmerson, and W. D. Phillips, “Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap,” Phys. Rev. Lett. 99, 260401 (2007). [CrossRef]
  14. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974). [CrossRef]
  15. R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007). [CrossRef] [PubMed]
  16. H. L. Haroutyunyan and G. Nienhuis, “Diffraction by circular optical lattices,” Phys. Rev. A 70, 063408 (2004). [CrossRef]
  17. K. Volke-Sepúlveda and R. Jáuregui, “All-optical 3D atomic loops generated with Bessel light fields,” J. Phys. B 42, 085303 (2009). [CrossRef]
  18. A. Vasara, J. Turunen, and A. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989). [CrossRef] [PubMed]
  19. J. A. Davis, J. Guertin, and D. M. Cottrell, “Diffraction-free beams generated with programmable spatial light modulators,” Appl. Opt. 32, 6368–6370 (1993). [CrossRef] [PubMed]
  20. Z. Bouchal and M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42, 1555–1566 (1995). [CrossRef]
  21. R. Jáuregui, “Rotational effects of twisted light on atoms beyond the paraxial approximation,” Phys. Rev. A 70, 033415 (2004). [CrossRef]
  22. R. Jáuregui and S. Hacyan, “Quantum-mechanical properties of Bessel beams,” Phys. Rev. A 71, 033411 (2005). [CrossRef]
  23. K. Volke-Sepúlveda and E. Ley-Koo, “General construction and connections of vector propagation invariant optical fields: TE and TM modes and polarization states,” J. Opt. A, Pure Appl. Opt. 8, 867–877 (2006). [CrossRef]
  24. A. Flores-Pérez, J. Hernández-Hernández, R. Jáuregui, and K. Volke-Sepúlveda, “Experimental generation and analysis of first-order TE and TM Bessel modes in free space,” Opt. Lett. 31, 1732–1734 (2006). [CrossRef] [PubMed]
  25. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007). [CrossRef]
  26. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73–87 (1993). [CrossRef]
  27. J. Turunen and A. T. Friberg, “Self-imaging and propagation-invariance in electromagnetic fields,” Pure Appl. Opt. 2, 51–60 (1993). [CrossRef]
  28. A. Siegman, Lasers (University Science Books, 1986), pp. 626–652.
  29. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005). [CrossRef]
  30. K. T. Gahagan and G. A. Swartzlander, Jr., “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B 15, 524–534 (1998). [CrossRef]
  31. V. Garcés-Chávez, K. Volke-Sepúlveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Orbital angular momentum transfer to an optically trapped low-index particle,” Phys. Rev. A 66, 063402 (2002). [CrossRef]
  32. T. Cizmar, V. Garcés-Chávez, K. Dholakia, and P. Zemanek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005). [CrossRef]
  33. A. O. Santillán, K. Volke-Sepúlveda, and A. Flores-Pérez, “Wave fields with a periodic orbital angular momentum gradient along a single axis: a chain of vortices,” New J. Phys. 11, 043004 (2009). [CrossRef]
  34. M. Bhattacharya, “Lattice with a twist: helical waveguides for ultracold matter,” Opt. Commun. 279, 219–222 (2007). [CrossRef]
  35. J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,” J. Opt. Soc. Am. B 6, 2023–2045 (1989). [CrossRef]
  36. U. Ruiz-Corona and V. Arrizon-Peña, “Characterization of twisted liquid crystal spatial light modulators,” Proc. SPIE 6422, 1–7 (2007).
  37. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with spiral phaseplate,” Opt. Commun. 112, 321–327 (1994). [CrossRef]
  38. D. Ganic, X. Gan, and M. Gu, “Optical trapping force with annular and doughnut laser beams based on vectorial diffraction,” Opt. Express 13, 1260–1265 (2005). [CrossRef] [PubMed]
  39. J. A. Davis, E. Carcole, and Don M. Cottrell, “Nondiffracting interference patterns generated with programmable spatial light modulators,” Appl. Opt. 35, 599–602 (1996). [CrossRef] [PubMed]
  40. F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987). [CrossRef]
  41. V. Arrizón, D. Sánchez-de-la-Llave, U. Ruiz, and G. Méndez, “Efficient generation of an arbitrary nondiffracting Bessel beam employing its phase modulation,” Opt. Lett. 34, 1456–1458 (2009). [CrossRef] [PubMed]
  42. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999), pp. 311–312.
  43. J. Arlt, “Handedness and azimuthal energy flow of optical vortex beams,” J. Mod. Opt. 50, 1573–1580 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited