OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 956–965

Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects

Brian A. Daniel and Govind P. Agrawal  »View Author Affiliations


JOSA B, Vol. 27, Issue 5, pp. 956-965 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000956


View Full Text Article

Enhanced HTML    Acrobat PDF (271 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comprehensive theory is developed for describing the nonlinear propagation of optical pulses through silicon waveguides with nanoscale dimensions. Our theory includes not only the vectorial nature of optical modes but also the coupling between the transverse electric and magnetic modes occurring for arbitrarily polarized optical fields. We have studied the dependence of relevant nonlinear parameters on waveguide dimensions and found a class of waveguide geometries for which self-phase modulation can have a dramatic impact on the polarization state of the optical field. Self-induced polarization changes are studied for both the continuous and pulsed optical fields propagating in silicon waveguides. We also discuss the possibility of using these effects for intensity discrimination and pulse compression.

© 2010 Optical Society of America

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.5940) Nonlinear optics : Self-action effects
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 28, 2010
Manuscript Accepted: March 2, 2010
Published: April 20, 2010

Citation
Brian A. Daniel and Govind P. Agrawal, "Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects," J. Opt. Soc. Am. B 27, 956-965 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-5-956


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007). [CrossRef] [PubMed]
  2. R. M. Osgood, Jr., N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1, 162–235 (2009). [CrossRef]
  3. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron. 16, 200–215 (2010). [CrossRef]
  4. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004). [CrossRef] [PubMed]
  5. H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2, 170–174 (2008). [CrossRef]
  6. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004). [CrossRef] [PubMed]
  7. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm femtosecond pulses,” Opt. Express 14, 8336–8346 (2006). [CrossRef] [PubMed]
  8. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef] [PubMed]
  9. Y. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006). [CrossRef] [PubMed]
  10. S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32, 2393–2395 (2007). [CrossRef] [PubMed]
  11. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008). [CrossRef]
  12. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 81–84 (2007). [CrossRef]
  13. Y. Dai, X. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 μs tunable delay using parametric mixing and optical phase conjugation in Si waveguides,” Opt. Express 17, 7004–7010 (2009). [CrossRef] [PubMed]
  14. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002). [CrossRef]
  15. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003). [CrossRef]
  16. G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004). [CrossRef]
  17. O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12, 829–834 (2004). [CrossRef] [PubMed]
  18. A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5 μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12, 1611–1621 (2004). [CrossRef] [PubMed]
  19. H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, “Nonlinear-optic silicon-nanowire waveguides,” Jpn. J. Appl. Phys. 44, 6541–6545 (2005). [CrossRef]
  20. I. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic-wire waveguides,” Opt. Express 14, 12380–12387 (2006). [CrossRef] [PubMed]
  21. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase-modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007). [CrossRef] [PubMed]
  22. S. Afshar V., W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34, 3577–3579 (2009). [CrossRef] [PubMed]
  23. S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part 1: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009). [CrossRef] [PubMed]
  24. J. B. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood, Jr., “Large longitudinal electric fields (Ez) in silicon nanowire waveguides,” Opt. Express 17, 2797–2804 (2009). [CrossRef] [PubMed]
  25. J. I. Dadap, N. C. Panoiu, X. Chen, I. Hsieh, X. Liu, C. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, Jr., “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express 16, 1280–1299 (2008). [CrossRef] [PubMed]
  26. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic, 2000).
  27. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, 1990).
  28. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Anisotropic nonlinear response of silicon in the near-infrared region,” Appl. Phys. Lett. 91, 071113 (2007). [CrossRef]
  29. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91, 021111 (2007). [CrossRef]
  30. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23, 123–129 (1987). [CrossRef]
  31. X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE J. Quantum Electron. 42, 160–170 (2006). [CrossRef]
  32. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  33. P. Lüsse, P. Stuwe, J. Schüle, and H. G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–494 (1994). [CrossRef]
  34. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited