OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 5 — May. 1, 2010
  • pp: 966–971

Optical microfabrication of tapers in low-loss chalcogenide fibers

Eric Lepine, Zhiyong Yang, Yann Gueguen, Johann Troles, Xiang-Hua Zhang, Bruno Bureau, Catherine Boussard-Pledel, Jean-Christophe Sangleboeuf, and Pierre Lucas  »View Author Affiliations


JOSA B, Vol. 27, Issue 5, pp. 966-971 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000966


View Full Text Article

Enhanced HTML    Acrobat PDF (681 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the use of photoinduced fluidity in low-loss chalcogenide fibers for producing tapers with fine control of the diameter and geometry. The tapers produced this way act as sensing zones along chalcogenide glass fibers used for evanescent wave spectroscopy. The optical microfabrication method consists in irradiating the chalcogenide fiber with sub-bandgap laser light under a tensile stress. The resulting athermal photoinduced fluidity permits to produce tapers with good control over the geometry without altering the optical properties of the fiber. Gains in detection sensitivity greater than 1 order of magnitude are measured using these tapers.

© 2010 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(160.2290) Materials : Fiber materials
(160.2750) Materials : Glass and other amorphous materials
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 4, 2010
Revised Manuscript: March 3, 2010
Manuscript Accepted: March 5, 2010
Published: April 20, 2010

Citation
Eric Lepine, Zhiyong Yang, Yann Gueguen, Johann Troles, Xiang-Hua Zhang, Bruno Bureau, Catherine Boussard-Pledel, Jean-Christophe Sangleboeuf, and Pierre Lucas, "Optical microfabrication of tapers in low-loss chalcogenide fibers," J. Opt. Soc. Am. B 27, 966-971 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-5-966


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Lucas, M. R. Riley, C. Boussard-Pledel, and B. Bureau, “Advances in chalcogenide fiber evanescent-wave biochemical sensing,” Anal. Biochem. 351, 1–10 (2006). [CrossRef]
  2. B. Mizaikoff, “Mid-IR fiber-optic sensors,” Anal. Chem. 75, 258A–267A (2003). [CrossRef] [PubMed]
  3. Y. Raichlin and A. Katzir, “Fiber-optic evanescent wave spectroscopy in the middle infrared,” Appl. Spectrosc. 62, 55A–72A (2008). [CrossRef] [PubMed]
  4. J. S. Sanghera, F. H. Kung, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, “Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers,” Appl. Opt. 33, 6315–6322 (1994). [CrossRef] [PubMed]
  5. H. Steiner, M. Jakusch, M. Kraft, M. Karlowatz, T. Baumann, R. Niessner, W. Konz, A. Brandenburg, K. Michel, C. Boussard-Pledel, B. Bureau, J. Lucas, Y. Reichlin, A. Katzir, N. Fleischmann, K. Staubmann, R. Allabashi, J. M. Bayona, and B. Mizaikoff, “In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system,” Appl. Spectrosc. 57, 607–613 (2003). [CrossRef] [PubMed]
  6. J. S. Sangehra, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198 (1995). [CrossRef]
  7. O. Eytan, B.-A. Sela, and A. Katzir, “Fiber-optic evanescent-wave spectroscopy and neural network: application to chemical blood analysis,” Appl. Opt. 39, 3357–3360 (2000). [CrossRef]
  8. J. Keirsse, C. Boussard-Pledel, O. Sire, O. Loreal, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Sol. 326, 430–433 (2003). [CrossRef]
  9. P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy (FEWS),” Appl. Spectrosc. 59, 1–9 (2005). [CrossRef] [PubMed]
  10. A. Messica, A. Greenstein, and A. Katzir, “Theory of fiber-optic, evanescent-wave spectroscopy and sensors,” Appl. Opt. 35, 2274–2284 (1996). [CrossRef] [PubMed]
  11. D. Lecoq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Pledel, and J. Lucas, “Infrared chalcogen glasses: chemical polishing and fiber remote spectroscopy,” Int. J. Inorg. Mater. 3, 233–239 (2001). [CrossRef]
  12. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324–10329 (2007). [CrossRef] [PubMed]
  13. A. V. Kolobov and K. Tanaka, in Handbook of Advanced Electronic and Photonic Materials and Devices, H.S.Nalwa, ed. (Academic, 2001), p. 47. [CrossRef]
  14. A.V.Kolobov, ed., Photo-Induced Metastability in Amorphous Semiconductors (Wiley-VCH, 2003). [CrossRef]
  15. H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270, 974–975 (1995). [CrossRef]
  16. K. Tanaka, “Photoinduced fluidity in chalcogenide glasses,” C. R. Chim. 5, 805–811 (2002). [CrossRef]
  17. L. Calvez, Z. Yang, and P. Lucas, “Light-induced matrix softening of Ge–As–Se network glasses,” Phys. Rev. Lett. 101, 177402 (2008). [CrossRef] [PubMed]
  18. J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater. 32, 212–215 (2009). [CrossRef]
  19. Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, and F. Smektala, “Aqueous corrosion of the GeSe4 chalcogenide glass: surface properties and corrosion mechanism,” J. Am. Ceram. Soc. 92, 1779–1787 (2009). [CrossRef]
  20. F. Charpentier, B. Bureau, J. Troles, C. Boussard-Pledel, K. Michel-Le Pierres, F. Smektala, and J.-L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater. 31, 496–500 (2009). [CrossRef]
  21. C. R. Schardt, J. H. Simmons, P. Lucas, L. Le Neindre, and J. Lucas, “Photodarkening in Ge3Se17 glass,” J. Non-Cryst. Solids 274, 23–29 (2000). [CrossRef]
  22. P. Lucas, E. A. King, A. Doraiswamy, and P. Jivaganont, “Competitive photostructural effects in Ge–Se glass,” Phys. Rev. B 71, 104207 (2005). [CrossRef]
  23. P. Lucas, A. Doraiswamy, and E. A. King, “Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Solids 332, 35–42 (2003). [CrossRef]
  24. P. Lucas, E. A. King, and A. Doraiswamy, “Comparison of photostructural changes induced by continuous and pulsed laser in chalcogenide glass,” J. Optoelectron. Adv. Mater. 8, 776–779 (2006).
  25. P. Lucas and E. A. King, “Calorimetric characterization of photo-induced relaxation in GeSe9 glass,” J. Appl. Phys. 100, 023502 (2006). [CrossRef]
  26. K. Tanaka, “Reversible photostructural changes: mechanisms, properties, and applications,” J. Non-Cryst. Solids 35-36, 1023–1034 (1980). [CrossRef]
  27. M. Katz, A. Katzir, I. Schnitzer, and A. Bornstein, “Quantitative evaluation of chalcogenide glass fiber evanescent wave spectroscopy,” Appl. Opt. 33, 5888–5894 (1994). [CrossRef] [PubMed]
  28. S. Hocde, C. Boussard-Pledel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci. 3, 279–284 (2001). [CrossRef]
  29. K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. L. Adama, K. Staubmann, and T. Baumannc, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators B 101, 252–259 (2004). [CrossRef]
  30. S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004). [CrossRef] [PubMed]
  31. M. Kastner, D. Adler, and H. Fritzsche, “Valence-alternation model for localized gap states in lone-pair semiconductors,” Phys. Rev. Lett. 37, 1504–1507 (1976). [CrossRef]
  32. K. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26, 243–245 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited