OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 6 — Jun. 1, 2010
  • pp: 1143–1152

Impact of fourth-order dispersion in the modulational instability spectra of wave propagation in glass fibers with saturable nonlinearity

P. Tchofo Dinda and K. Porsezian  »View Author Affiliations


JOSA B, Vol. 27, Issue 6, pp. 1143-1152 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001143


View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the modulational instability (MI) of light waves in glass fibers with a local saturable nonlinear refractive index. We identify and discuss the salient features of the effect of the fourth order of the fiber dispersion, in the MI spectra. Particularly, we find that in fibers with negative sign of the second-order dispersion and positive sign of the fourth-order dispersion (FOD), the two existing types of MI processes, called processes of type I, which generate a single pair of sidebands, and processes of type II, which lead to two pairs of sidebands, become highly sensitive to the magnitude of the FOD, both quantitatively and qualitatively. We demonstrate the existence of a critical FOD and two branches of critical pump powers, from which we construct the global map of the MI behaviors in the system, including clear delimitations of the respective domains of the existence of MI processes of types I and II.

© 2010 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 9, 2009
Revised Manuscript: March 9, 2010
Manuscript Accepted: March 12, 2010
Published: May 4, 2010

Citation
P. Tchofo Dinda and K. Porsezian, "Impact of fourth-order dispersion in the modulational instability spectra of wave propagation in glass fibers with saturable nonlinearity," J. Opt. Soc. Am. B 27, 1143-1152 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-6-1143


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2008).
  2. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986). [CrossRef] [PubMed]
  3. A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Opt. Lett. 9, 288–290 (1984). [CrossRef] [PubMed]
  4. E. J. Greer, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, “Generation of 2 THz repetition rate pulse trains through induced modulational instability,” Electron. Lett. 25, 1246–1248 (1989). [CrossRef]
  5. S. Sudo, H. Itoh, K. Okamoto, and K. Kubodora, “Generation of 5 THz repetition optical pulses by modulation instability in optical fibers,” Appl. Phys. Lett. 54, 993–994 (1989). [CrossRef]
  6. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990). [CrossRef]
  7. P. Tchofo Dinda, G. Millot, E. Seve, and M. Haelterman, “Demonstration of nonlinear gap in the modulational instability spectra of wave propagation in highly birefringents fibers,” Opt. Lett. 21, 1640–1642 (1996). [CrossRef]
  8. N. J. Smith and N. J. Doran, “Modulational instabilities in fibers with periodic dispersion management,” Opt. Lett. 21, 570–572 (1996). [CrossRef] [PubMed]
  9. F. Kh. Abdullaev, S. A. Darmanyan, A. Kobyakov, F. Lederer, K. Porsezian, and B. Kalithansan, “Modulational instability in optical fibers with variable dispersion,” Phys. Lett. A 220, 213–218 (1996). [CrossRef]
  10. A. Kumar, A. Labruyere, and P. Tchofo Dinda, “Modulational instability in fiber systems with periodic loss compensation and dispersion management,” Opt. Commun. 219, 221–232 (2003). [CrossRef]
  11. S. Ambomo, C. M. Ngabireng, P. Tchofo Dinda, A. Labruyere, K. Porsezian, and B. Kalithansan, “Critical behavior with dramatic enhancement of modulational instability gain in fiber systems with periodic variation dispersion,” J. Opt. Soc. Am. B 25, 425–433 (2008). [CrossRef]
  12. S. Pitois, M. Haelterman, and G. Millot, “Bragg modulational instability induced by a dynamic grating in an optical fiber,” Opt. Lett. 26, 780–782 (2001). [CrossRef]
  13. C. M. de Sterke, “Theory of modulational instability in fiber Bragg gratings,” J. Opt. Soc. Am. B 15, 2660–2667 (1998). [CrossRef]
  14. K. Porsezian, K. Senthilnathan, and S. Devipriya, “Modulational instability in fiber Bragg grating with non-Kerr nonlinearity,” IEEE J. Quantum Electron. 41, 789–796 (2005). [CrossRef]
  15. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003). [CrossRef] [PubMed]
  16. A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. 16, 694–697 (1980). [CrossRef]
  17. S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, “Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation,” Phys. Rev. A 43, 6162–6165 (1991). [CrossRef] [PubMed]
  18. R. K. Jain and R. C. Lind, “Degenerate four-wave mixing in semiconductor-doped glasses,” J. Opt. Soc. Am. 73, 647–653 (1983). [CrossRef]
  19. L. H. Acioli, A. S. L. Gomes, and J. R. Rios Leite, “Measurement of high-order optical nonlinear susceptibilities in semiconductor-doped glasses,” Appl. Phys. Lett. 53, 1788–1790 (1988). [CrossRef]
  20. U. Langbein, F. Lederer, T. Peschel, and H. E. Ponath, “Nonlinear guided waves in saturable nonlinear media,” Opt. Lett. 10, 571–573 (1985). [CrossRef] [PubMed]
  21. P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzanis, “New results on optical phase conjugation in semiconductor-doped glasses,” J. Opt. Soc. Am. B 4, 5–13 (1987). [CrossRef]
  22. C. N. Ironside, T. J. Cullen, B. S. Bhumbra, J. Bell, W. C. Banyai, N. Finlayson, C. T. Seaton, and G. I. Stegeman, “Nonlinear-optical effects in ion-exchanged semiconductor-doped glass waveguides,” J. Opt. Soc. Am. B 5, 492–495 (1988). [CrossRef]
  23. J. L. Coutaz and M. Kull, “Saturation of nonlinear index of refraction in semiconductor-doped glass,” J. Opt. Soc. Am. B 8, 95–98 (1991). [CrossRef]
  24. X. H. Wang and G. K. Cambrell, “Simulation of strong nonlinear effects in optical waveguides,” J. Opt. Soc. Am. B 10, 2048–2055 (1993). [CrossRef]
  25. D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293–1295 (1989). [CrossRef]
  26. I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053–2059 (1995). [CrossRef]
  27. Y. F. Chen, K. Beckwitt, F. K. Wise, B. G. Aitken, J. S. Sanghera, and I. D. Aggarwal, “Measurement of fifth- and seventh-order nonlinearities of glasses,” J. Opt. Soc. Am. B 23, 347–352 (2006). [CrossRef]
  28. J. M. Hickmann, S. B. Cavalcanti, N. M. Borges, E. A. Gouveia, and A. S. Gouveia-Neto, “Modulational instability in semiconductor-doped glass fibers with saturable nonlinearity,” Opt. Lett. 18, 182–184 (1993). [CrossRef] [PubMed]
  29. S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226, 415–422 (2003). [CrossRef]
  30. P. Tchofo Dinda, C. M. Ngabireng, K. Porsezian, and B. Kalithansan, “Modulational instability in optical fibers with arbitrary higher-order dispersion and delayed Raman response,” Opt. Commun. 266, 142–150 (2006). [CrossRef]
  31. X. Zhong and A. Xiang, “Modulation polarization instability of light in a nonlinear birefringent dispersive medium,” Opt. Fiber Technol. 13, 271–279 (2007). [CrossRef]
  32. N. Da Dalt, C. De Angelis, G. F. Nalesso, and M. Santagiustina, “Dynamics of induced modulational instability in waveguides with saturable nonlinearity,” Opt. Commun. 121, 69–72 (1995). [CrossRef]
  33. G. L. Da Silva, I. Gleria, M. L. Lyra, and A. S. B. Sombra, “Modulational instability in lossless fibers with saturable delayed nonlinear response,” J. Opt. Soc. Am. B 26, 183–188 (2009). [CrossRef]
  34. S. Gatz and J. Herrmann, “Soliton propagation in materials with saturable nonlinearity,” J. Opt. Soc. Am. B 8, 2296–2302 (1991). [CrossRef]
  35. J. Herrmann, “propagation of ultrashort light pulses in fibers with saturable nonlinearity in the normal-dispersion region,” J. Opt. Soc. Am. B 8, 1507–1511 (1991). [CrossRef]
  36. K. W. DeLong, A. Gabel, C. T. Seaton, and G. I. Stegeman, “Nonlinear transmission, degenerate four-wave mixing, photodarkening, and the effects of carrier-density-dependent nonlinearities in semiconductor-doped glasses,” J. Opt. Soc. Am. B 6, 1306–1313 (1989). [CrossRef]
  37. A. Labruyere, S. Ambomo, C. Ngabireng, P. Tchofo Dinda, K. Nakkeeran, and K. Porsezian, “Suppression of sideband frequency shifts in the modulational instability spectra of wave propagation in optical fiber systems,” Opt. Lett. 32, 1287–1289 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited