OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 6 — Jun. 1, 2010
  • pp: 1153–1157

Asymmetric open cavities for beam steering and switching from line-defect photonic crystals

Maoqing Xin, Liang Zhang, Ching Eng Png, Jing Hua Teng, and Aaron J. Danner  »View Author Affiliations

JOSA B, Vol. 27, Issue 6, pp. 1153-1157 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (946 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study numerically a group of asymmetric open cavities located at the exit of a photonic crystal waveguide. High angular confinement and deflection of the photonic beam are detected with zero side lobes. We further demonstrate, for the first time to our knowledge, the potential application of generalized open cavities in realizing optical switches/modulators with beam deflection. Finally, the frequency-domain response of the device is investigated and high bandwidth operation can be realized to cover some of the most commonly used transmission windows in the optical-fiber-communication regime.

© 2010 Optical Society of America

OCIS Codes
(230.4110) Optical devices : Modulators
(250.5300) Optoelectronics : Photonic integrated circuits
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: November 9, 2009
Revised Manuscript: March 17, 2010
Manuscript Accepted: April 9, 2010
Published: May 6, 2010

Maoqing Xin, Liang Zhang, Ching Eng Png, Jing Hua Teng, and Aaron J. Danner, "Asymmetric open cavities for beam steering and switching from line-defect photonic crystals," J. Opt. Soc. Am. B 27, 1153-1157 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005). [CrossRef] [PubMed]
  2. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  3. S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at ∼1.6-μm wavelengths built with a two-dimensional photonic crystal,” Opt. Lett. 27, 1400–1402 (2002). [CrossRef]
  4. E. Moreno, F. J. G. Vidal, and L. M. Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004). [CrossRef]
  5. S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005). [CrossRef]
  6. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 11, 113903 (2004). [CrossRef]
  7. C. C. Chen, T. Pertsch, F. Lederer, and A. Tunnnermann, “Directional emission from photonic crystal waveguides,” Opt. Express 14, 2423–2428 (2006). [CrossRef] [PubMed]
  8. H. Kurt, “Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exit,” IEEE Photonics Technol. Lett. 20, 1682–1684 (2008). [CrossRef]
  9. E. Colak, H. Caglayan, A. O. Cakmak, A. D. Villa, F. Capolino, and E. Ozbay, “Frequency dependent steering with backward leaky waves via photonic crystal interface layer,” Opt. Express 17, 9879–9890 (2009). [CrossRef] [PubMed]
  10. A. Sugitatsu, T. Asano, and S. Noda, “Line defect-waveguide laser integrated with a point defect in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 86, 171106 (2005). [CrossRef]
  11. D. T. Neilson, R. Frahm, P. Kolodner, C. A. Bolle, R. Ryf, J. Kim, A. R. Papazian, C. J. Nuzman, A. Gasparyan, N. R. Basavanhally, V. A. Aksyuk, and J. V. Gates, “256×256 port optical cross-connect subsystem,” J. Lightwave Technol. 22, 1499–1509 (2004). [CrossRef]
  12. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Technol. 17, 2032–2038 (1999). [CrossRef]
  13. T. Baba, T. Matsumoto, and M. Echizen, “Finite difference time domain study of high efficiency photonic crystal superprisms,” Opt. Express 12, 4608–4613 (2004). [CrossRef] [PubMed]
  14. K. Guven and E. Ozbay, “Directivity enhancement and deflection of the beam emitted from a photonic crystal waveguide via defect coupling,” Opt. Express 15, 14973–14978 (2007). [CrossRef] [PubMed]
  15. S. Y. Lin, Z. P. Yang, M. Chen, J. A. Bur, A. Levitan, and L. H. Kosowsky, “The use of a deformable photonic crystal for millimeter-wave beam steering,” Appl. Phys. Lett. 92, 031112 (2008). [CrossRef]
  16. N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008). [CrossRef] [PubMed]
  17. K. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. 24, 397–405 (1982). [CrossRef]
  18. M. Xin, A. J. Danner, C. E. Png, and S. T. Lim, “Theoretical study of a cross waveguide resonator-based silicon electro-optic modulator with low power consumption,” J. Opt. Soc. Am. B 26, 2176–2180 (2009). [CrossRef]
  19. G. Cocorullo, M. Iodice, and I. Rendina, “All-silicon Fabry–Perot modulator based on the thermo-optic effect,” Opt. Lett. 19, 420–422 (1994). [PubMed]
  20. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited