OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 6 — Jun. 1, 2010
  • pp: 1158–1164

Ultraviolet-blue upconversion emissions of Ho 3 + ions

G. Y. Chen, C. H. Yang, B. Aghahadi, H. J. Liang, Y. Liu, L. Li, and Z. G. Zhang  »View Author Affiliations

JOSA B, Vol. 27, Issue 6, pp. 1158-1164 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultraviolet-blue upconversion (UC) radiations of Ho 3 + ions at 240, 290, 360, 385, 418, 445, 485 nm were observed in hexagonal Na Y F 4 : Yb 3 + Ho 3 + powders under diode laser excitation of 970 nm . UC mechanism analyses illustrate that successive energy transfers from Yb 3 + to Ho 3 + generate emissions at 240, 360, 385, and 418 nm , while cross relaxations between Ho 3 + ions evoke UC emissions at 290 and 445 nm . Power dependence analyses indicate that these UC emissions already have intense saturation effects even at low-power density range of 0.3 38 W cm 2 . Theoretical calculations based on steady-state equations demonstrate the proposed UC mechanisms and explain well the observed saturation effects.

© 2010 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(190.4180) Nonlinear optics : Multiphoton processes
(190.7220) Nonlinear optics : Upconversion
(300.6410) Spectroscopy : Spectroscopy, multiphoton
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:
Nonlinear Optics

Original Manuscript: September 29, 2009
Revised Manuscript: January 31, 2010
Manuscript Accepted: February 23, 2010
Published: May 6, 2010

G. Y. Chen, C. H. Yang, B. Aghahadi, H. J. Liang, Y. Liu, L. Li, and Z. G. Zhang, "Ultraviolet-blue upconversion emissions of Ho3+ ions," J. Opt. Soc. Am. B 27, 1158-1164 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–173 (2004). [CrossRef] [PubMed]
  2. D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+∕Yb3+:β-YF3 nanocrystals emdded glass ceramic,” Appl. Phys. Lett. 91, 051920 (2007). [CrossRef]
  3. J. F. Suyer, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27, 1111–1130 (2005). [CrossRef]
  4. X. B. Chen, and Z. F. Song, “Study on six-photon and five-photon ultraviolet upconversion luminescence,” J. Opt. Soc. Am. B 24, 965–971 (2007). [CrossRef]
  5. G. Y. Chen, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, “Ultraviolet upconversion fluorescence in rare-earth-ion-doped Y2O3 induced by infrared diode laser excitation,” Opt. Lett. 32, 87–89 (2007). [CrossRef]
  6. L. H. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90, 13116 (2007). [CrossRef]
  7. C. Y. Cao, W. P. Qin, J. S. Zhang, Y. Wang, P. F. Zhu, G. D. Wei, G. F. Wang, R. Kim, and L. L. Wang, “Ultraviolet upconversion emissions of Gd3+,” Opt. Lett. 33, 857–859 (2008). [CrossRef] [PubMed]
  8. G. Y. Chen, H. J. Liang, H. C. Liu, G. Somesfalean, and Z. G. Zhang, “Near vacuum ultraviolet luminescence of Gd3+ and Er3+ ions generated by super saturation upconversion processes,” Opt. Express 17, 16366–16371 (2009). [CrossRef] [PubMed]
  9. X. Wang, Y. Bu, S. Xiao, X. Yang, and J. W. Ding, “Upconversion in Ho3+-doped YbF3 particle prepared by coprecipation method,” Appl. Phys. B 93, 801–807 (2008). [CrossRef]
  10. E. de la Rosa, P. Salas, H. Desirena, C. Angeles, and R. A. Rodríguez, “Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals,” Appl. Phys. Lett. 87, 241912 (2005). [CrossRef]
  11. P. S. Peijzel, R. T. Wegh, A. Meijerink, J. Hölsä, and R. J. Lamminmäki, “High energy levels and high-energetic emissions of the trivalent holmium ion in LiYF4 and YF3,” Opt. Commun. 204, 195–202 (2002). [CrossRef]
  12. F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, “Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics,” Appl. Phys. Lett. 86, 051106 (2005). [CrossRef]
  13. G. D. Gilliland, R. C. Powell, and L. Esterowitz, “Spectral and upconversion dynamics and their relationship to the laser properties of BaYb2F8:Ho3+,” Phys. Rev. B 38, 9958–9973 (1988). [CrossRef]
  14. J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Yb3+ ion as sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+,” Chem. Phys. Lett. 390, 403–407 (2004). [CrossRef]
  15. I. R. Martín, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses,” J. Alloys Compd. 275–277, 345–348 (1998). [CrossRef]
  16. A. S. Gouveia-Neto, E. B. da Costa, L. A. Bueno, and S. J. L. Ribeiro, “Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic,” J. Lumin. 110, 79–84 (2004). [CrossRef]
  17. L. Q. An, J. Zhang, M. Liu, and S. W. Wang, “Up-conversion properties of Yb3+, Ho3+:Lu2O3 sintered ceramic,” J. Lumin. 112–123, 125–127 (2007). [CrossRef]
  18. N. K. Giri, D. K. Rai, and S. B. Rai, “Multicolor upconversion emission from Tm3++Ho3++Yb3+ codoped tellurite glass on NIR excitations,” Appl. Phys. B 91, 437–441 (2008). [CrossRef]
  19. K. S. Yang, Y. Li, C. Y. Yu, L. P. Lu, C. H. Ye, and X. Y. Zhang,“Upconversion luminescence properties of Ho3+, Tm3+, Yb3+ codoped nanocrystals NaYF4 syntheized by hydrothermal method,” J. Rare Earths 24, 757–760 (2006). [CrossRef]
  20. V. Lavín, F. Lahoz, I. R. Martín, U. R. Rodríguez-Mendoza, and J. M. Cáceres, “Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature,” Opt. Mater. 27, 1754–1761 (2005). [CrossRef]
  21. F. Lahoz, I. R. Martín, and D. Alonso, “Theoretical analysis of the photon avalanche dynamics in Ho3+–Yb3+ codoped systems under near-infrared excitation,” Phys. Rev. B 71, 045115 (2005). [CrossRef]
  22. M. Kowalska, G. Klocek, R. Piramidowicz, and M. Malinowski, “Ultraviolet emission in Ho:ZBLN fiber,” J. Alloys Compd. 380, 156–158 (2004). [CrossRef]
  23. J. N. Shan, and Y. G. Ju, “Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating,” Appl. Phys. Lett. 91, 123103 (2007). [CrossRef]
  24. W. T. Carnal, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968). [CrossRef]
  25. M. Malinowski, M. Kaczkan, A. Wnuk, and M. Szufliñska, “Emission from the high lying excited states of Ho3+ in YAP and YAG crystals,” J. Lumin. 106, 269–279 (2004). [CrossRef]
  26. X. F. Wang, S. G. Xiao, Y. Y. Bu, X. L. Yang, and J. W. Ding, “Visible photon-avalanche upconversion in Ho3+ singly doped β-Na(Y1.5Na0.5)F6 under 980 nm excitation,” Opt. Lett. 15, 2653–2655 (2008). [CrossRef]
  27. O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2, 120 (2008). [CrossRef]
  28. J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited